↓ Skip to main content

Coronary MR angiography at 3T: fat suppression versus water-fat separation

Overview of attention for article published in Magnetic Resonance Materials in Physics, Biology and Medicine, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
35 Mendeley
Title
Coronary MR angiography at 3T: fat suppression versus water-fat separation
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine, April 2016
DOI 10.1007/s10334-016-0550-7
Pubmed ID
Authors

Maryam Nezafat, Markus Henningsson, David P. Ripley, Nathalie Dedieu, Gerald Greil, John P. Greenwood, Peter Börnert, Sven Plein, René M. Botnar

Abstract

To compare Dixon water-fat suppression with spectral pre-saturation with inversion recovery (SPIR) at 3T for coronary magnetic resonance angiography (MRA) and to demonstrate the feasibility of fat suppressed coronary MRA at 3T without administration of a contrast agent. Coronary MRA with Dixon water-fat separation or with SPIR fat suppression was compared on a 3T scanner equipped with a 32-channel cardiac receiver coil. Eight healthy volunteers were examined. Contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), right coronary artery (RCA), and left anterior descending (LAD) coronary artery sharpness and length were measured and statistically compared. Two experienced cardiologists graded the visual image quality of reformatted Dixon and SPIR images (1: poor quality to 5: excellent quality). Coronary MRA images in healthy volunteers showed improved contrast with the Dixon technique compared to SPIR (CNR blood-fat: Dixon = 14.9 ± 2.9 and SPIR = 13.9 ± 2.1; p = 0.08, CNR blood-myocardium: Dixon = 10.2 ± 2.7 and SPIR = 9.11 ± 2.6; p = 0.1). The Dixon method led to similar fat suppression (fat SNR with Dixon: 2.1 ± 0.5 vs. SPIR: 2.4 ± 1.2, p = 0.3), but resulted in significantly increased SNR of blood (blood SNR with Dixon: 19.9 ± 4.5 vs. SPIR: 15.5 ± 3.1, p < 0.05). This means the residual fat signal is slightly lower with the Dixon compared to the SIPR technique (although not significant), while the SNR of blood is significantly higher with the Dixon technique. Vessel sharpness of the RCA was similar for Dixon and SPIR (57 ± 7 % vs. 56 ± 9 %, p = 0.2), while the RCA visualized vessel length was increased compared to SPIR fat suppression (107 ± 21 vs. 101 ± 21 mm, p < 0.001). For the LAD, vessel sharpness (50 ± 13 % vs. 50 ± 7 %, p = 0.4) and vessel length (92 ± 46 vs. 90 ± 47 mm, p = 0.4) were similar with both techniques. Consequently, the Dixon technique resulted in an improved visual score of the coronary arteries in the water fat separated images of healthy subjects (RCA: 4.6 ± 0.5 vs. 4.1 ± 0.7, p = 0.01, LAD: 4.1 ± 0.7 vs. 3.5 ± 0.8, p = 0.007). Dixon water-fat separation can significantly improve coronary artery image quality without the use of a contrast agent at 3T.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 26%
Researcher 7 20%
Other 4 11%
Professor 3 9%
Student > Bachelor 2 6%
Other 4 11%
Unknown 6 17%
Readers by discipline Count As %
Engineering 11 31%
Medicine and Dentistry 9 26%
Physics and Astronomy 3 9%
Nursing and Health Professions 1 3%
Energy 1 3%
Other 3 9%
Unknown 7 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 October 2016.
All research outputs
#16,069,695
of 23,849,058 outputs
Outputs from Magnetic Resonance Materials in Physics, Biology and Medicine
#352
of 492 outputs
Outputs of similar age
#183,429
of 302,605 outputs
Outputs of similar age from Magnetic Resonance Materials in Physics, Biology and Medicine
#7
of 11 outputs
Altmetric has tracked 23,849,058 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 492 research outputs from this source. They receive a mean Attention Score of 3.2. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 302,605 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.