↓ Skip to main content

Altered excitatory-inhibitory balance within somatosensory cortex is associated with enhanced plasticity and pain sensitivity in a mouse model of multiple sclerosis

Overview of attention for article published in Journal of Neuroinflammation, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
64 Dimensions

Readers on

mendeley
133 Mendeley
Title
Altered excitatory-inhibitory balance within somatosensory cortex is associated with enhanced plasticity and pain sensitivity in a mouse model of multiple sclerosis
Published in
Journal of Neuroinflammation, June 2016
DOI 10.1186/s12974-016-0609-4
Pubmed ID
Authors

Liam E. Potter, John W. Paylor, Jee Su Suh, Gustavo Tenorio, Jayalakshmi Caliaperumal, Fred Colbourne, Glen Baker, Ian Winship, Bradley J. Kerr

Abstract

Chronic neuropathic pain is a common symptom of multiple sclerosis (MS). MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) has been used as an animal model to investigate the mechanisms of pain in MS. Previous studies have implicated sensitization of spinal nociceptive networks in the pathogenesis of pain in EAE. However, the involvement of supraspinal sites of nociceptive integration, such as the primary somatosensory cortex (S1), has not been defined. We therefore examined functional, structural, and immunological alterations in S1 during the early stages of EAE, when pain behaviors first appear. We also assessed the effects of the antidepressant phenelzine (PLZ) on S1 alterations and nociceptive (mechanical) sensitivity in early EAE. PLZ has been shown to restore central nervous system (CNS) tissue concentrations of GABA and the monoamines (5-HT, NA) in EAE. We hypothesized that PLZ treatment would also normalize nociceptive sensitivity in EAE by restoring the balance of excitation and inhibition (E-I) in the CNS. We used in vivo flavoprotein autofluorescence imaging (FAI) to assess neural ensemble responses in S1 to vibrotactile stimulation of the limbs in early EAE. We also used immunohistochemistry (IHC), and Golgi-Cox staining, to examine synaptic changes and neuroinflammation in S1. Mechanical sensitivity was assessed at the clinical onset of EAE with Von Frey hairs. Mice with early EAE exhibited significantly intensified and expanded FAI responses in S1 compared to controls. IHC revealed increased vesicular glutamate transporter (VGLUT1) expression and disrupted parvalbumin+ (PV+) interneuron connectivity in S1 of EAE mice. Furthermore, peri-neuronal nets (PNNs) were significantly reduced in S1. Morphological analysis of excitatory neurons in S1 revealed increased dendritic spine densities. Iba-1+ cortical microglia were significantly elevated early in the disease. Chronic PLZ treatment was found to normalize mechanical thresholds in EAE. PLZ also normalized S1 FAI responses, neuronal morphologies, and cortical microglia numbers and attenuated VGLUT1 reactivity-but did not significantly attenuate the loss of PNNs. These findings implicate a pro-excitatory shift in the E-I balance of the somatosensory CNS, arising early in the pathogenesis EAE and leading to large-scale functional and structural plasticity in S1. They also suggest a novel antinociceptive effect of PLZ treatment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 133 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 <1%
Unknown 132 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 15%
Student > Bachelor 15 11%
Researcher 14 11%
Student > Master 13 10%
Student > Doctoral Student 10 8%
Other 26 20%
Unknown 35 26%
Readers by discipline Count As %
Medicine and Dentistry 22 17%
Neuroscience 22 17%
Agricultural and Biological Sciences 11 8%
Biochemistry, Genetics and Molecular Biology 7 5%
Pharmacology, Toxicology and Pharmaceutical Science 7 5%
Other 22 17%
Unknown 42 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2017.
All research outputs
#14,265,823
of 22,876,619 outputs
Outputs from Journal of Neuroinflammation
#1,573
of 2,643 outputs
Outputs of similar age
#195,164
of 345,197 outputs
Outputs of similar age from Journal of Neuroinflammation
#39
of 65 outputs
Altmetric has tracked 22,876,619 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,643 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,197 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.