↓ Skip to main content

A method for measuring rotation of a thermal carbon nanomotor using centrifugal effect

Overview of attention for article published in Scientific Reports, June 2016
Altmetric Badge

Mentioned by

video
1 YouTube creator

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A method for measuring rotation of a thermal carbon nanomotor using centrifugal effect
Published in
Scientific Reports, June 2016
DOI 10.1038/srep27338
Pubmed ID
Authors

Kun Cai, Jingzhou Yu, Jiao Shi, Qing H. Qin

Abstract

A thermal nanomotor is relatively easy to fabricate and regulate as it contains just a few or even no accessory devices. Since the double-wall carbon nanotube (CNT)-based rotary nanomotor was established in a thermostat, assessment of the rotation of the rotor (inner tube) in the stator (outer tube) of the nanomotor has been critical, but remains challenging due to two factors: the small size of the rotor (only a few nanometers) and the high rotational frequency (»1 GHz). To measure the rotation of the nanomotor, in the present study, a probe test method is proposed. Briefly, the rotor is connected to an end-tube (CNT) through a graphene (GN) nanoribbon. As the CNT-probe is on the trajectory of the end-tube which rotates with the rotor, it will collide with the end-tube. The sharp fluctuation indicating the probe tip deflection can be observed and recorded. As a curly GN by hydrogenation is adopted for connecting the rotor and the end-tube, collision between the end-tube and the probe tip occurs only when the centrifugal force is higher than a threshold which can be considered as the rotational frequency of the rotor being measured by the present method.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 33%
Professor 1 17%
Student > Doctoral Student 1 17%
Student > Master 1 17%
Unknown 1 17%
Readers by discipline Count As %
Physics and Astronomy 1 17%
Materials Science 1 17%
Chemistry 1 17%
Engineering 1 17%
Unknown 2 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 June 2016.
All research outputs
#20,333,181
of 22,877,793 outputs
Outputs from Scientific Reports
#105,621
of 123,594 outputs
Outputs of similar age
#291,815
of 339,291 outputs
Outputs of similar age from Scientific Reports
#2,959
of 3,527 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 123,594 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,291 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3,527 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.