↓ Skip to main content

Synthesis of Ferromagnetic Fe0.6Mn0.4O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1‐T2 Dual‐Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy

Overview of attention for article published in Advanced Healthcare Materials, June 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
75 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synthesis of Ferromagnetic Fe0.6Mn0.4O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1‐T2 Dual‐Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy
Published in
Advanced Healthcare Materials, June 2016
DOI 10.1002/adhm.201600357
Pubmed ID
Authors

Xiao Li Liu, Cheng Teng Ng, Prashant Chandrasekharan, Hai Tao Yang, Ling Yun Zhao, Erwin Peng, Yun Bo Lv, Wen Xiao, Jie Fang, Jia Bao Yi, Huan Zhang, Kai-Hsiang Chuang, Boon Huat Bay, Jun Ding, Hai Ming Fan

Abstract

Uniform wüstite Fe0.6 Mn0.4 O nanoflowers have been successfully developed as an innovative theranostic agent with T1 -T2 dual-mode magnetic resonance imaging (MRI), for diagnostic applications and therapeutic interventions via magnetic hyperthermia. Unlike their antiferromagnetic bulk counterpart, the obtained Fe0.6 Mn0.4 O nanoflowers show unique room-temperature ferromagnetic behavior, probably due to the presence of an exchange coupling effect. Combined with the flower-like morphology, ferromagnetic Fe0.6 Mn0.4 O nanoflowers are demonstrated to possess dual-modal MRI sensitivity, with longitudinal relaxivity r1 and transverse relaxivity r2 as high as 4.9 and 61.2 mm(-1) s(-1) [Fe]+[Mn], respectively. Further in vivo MRI carried out on the mouse orthotopic glioma model revealed gliomas are clearly delineated in both T1 - and T2 -weighted MR images, after administration of the Fe0.6 Mn0.4 O nanoflowers. In addition, the Fe0.6 Mn0.4 O nanoflowers also exhibit excellent magnetic induction heating effects. Both in vitro and in vivo magnetic hyperthermia experimentation has demonstrated that magnetic hyperthermia by using the innovative Fe0.6 Mn0.4 O nanoflowers can induce MCF-7 breast cancer cell apoptosis and a complete tumor regression without appreciable side effects. The results have demonstrated that the innovative Fe0.6 Mn0.4 O nanoflowers can be a new magnetic theranostic platform for in vivo T1 -T2 dual-mode MRI and magnetic thermotherapy, thereby achieving a one-stop diagnosis cum effective therapeutic modality in cancer management.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Unknown 64 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 17%
Researcher 10 15%
Student > Master 6 9%
Unspecified 5 8%
Student > Doctoral Student 3 5%
Other 10 15%
Unknown 20 31%
Readers by discipline Count As %
Medicine and Dentistry 7 11%
Unspecified 5 8%
Chemistry 5 8%
Materials Science 5 8%
Physics and Astronomy 5 8%
Other 14 22%
Unknown 24 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 June 2016.
All research outputs
#22,024,252
of 24,571,708 outputs
Outputs from Advanced Healthcare Materials
#2,382
of 2,722 outputs
Outputs of similar age
#315,401
of 359,545 outputs
Outputs of similar age from Advanced Healthcare Materials
#52
of 59 outputs
Altmetric has tracked 24,571,708 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,722 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 359,545 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.