↓ Skip to main content

Quantifying Protein-Ligand Binding Constants using Electrospray Ionization Mass Spectrometry: A Systematic Binding Affinity Study of a Series of Hydrophobically Modified Trypsin Inhibitors

Overview of attention for article published in Journal of the American Society for Mass Spectrometry, August 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
65 Mendeley
Title
Quantifying Protein-Ligand Binding Constants using Electrospray Ionization Mass Spectrometry: A Systematic Binding Affinity Study of a Series of Hydrophobically Modified Trypsin Inhibitors
Published in
Journal of the American Society for Mass Spectrometry, August 2012
DOI 10.1007/s13361-012-0451-6
Pubmed ID
Authors

Dragana Cubrilovic, Adam Biela, Frank Sielaff, Torsten Steinmetzer, Gerhard Klebe, Renato Zenobi

Abstract

NanoESI-MS is used for determining binding strengths of trypsin in complex with two different series of five congeneric inhibitors, whose binding affinity in solution depends on the size of the P3 substituent. The ligands of the first series contain a 4-amidinobenzylamide as P1 residue, and form a tight complex with trypsin. The inhibitors of the second series have a 2-aminomethyl-5-chloro-benzylamide as P1 group, and represent a model system for weak binders. The five different inhibitors of each group are based on the same scaffold and differ only in the length of the hydrophobic side chain of their P3 residue, which modulates the interactions in the S3/4 binding pocket of trypsin. The dissociation constants (K(D)) for high affinity ligands investigated by nanoESI-MS ranges from 15 nM to 450 nM and decreases with larger hydrophobic P3 side chains. Collision-induced dissociation (CID) experiments of five trypsin and benzamidine-based complexes show a correlation between trends in K(D) and gas-phase stability. For the second inhibitor series we could show that the effect of imidazole, a small stabilizing additive, can avoid the dissociation of the complex ions and as a result increases the relative abundance of weakly bound complexes. Here the K(D) values ranging from 2.9 to 17.6 μM, some 1-2 orders of magnitude lower than the first series. For both ligand series, the dissociation constants (K(D)) measured via nanoESI-MS were compared with kinetic inhibition constants (K(i)) in solution.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
United States 1 2%
Germany 1 2%
Unknown 62 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 32%
Researcher 16 25%
Student > Doctoral Student 4 6%
Student > Bachelor 4 6%
Student > Master 4 6%
Other 6 9%
Unknown 10 15%
Readers by discipline Count As %
Chemistry 35 54%
Biochemistry, Genetics and Molecular Biology 7 11%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Agricultural and Biological Sciences 3 5%
Medicine and Dentistry 2 3%
Other 2 3%
Unknown 13 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 August 2012.
All research outputs
#16,048,009
of 25,374,647 outputs
Outputs from Journal of the American Society for Mass Spectrometry
#2,444
of 3,834 outputs
Outputs of similar age
#113,987
of 184,461 outputs
Outputs of similar age from Journal of the American Society for Mass Spectrometry
#22
of 60 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,834 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 184,461 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 60 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.