↓ Skip to main content

Expression of NADPH oxidase and production of reactive oxygen species in aorta in an active immunization mouse model with AT1-EC2 peptide

Overview of attention for article published in Current Medical Science, August 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
13 Mendeley
Title
Expression of NADPH oxidase and production of reactive oxygen species in aorta in an active immunization mouse model with AT1-EC2 peptide
Published in
Current Medical Science, August 2012
DOI 10.1007/s11596-012-0085-8
Pubmed ID
Authors

Yumiao Wei, Yaoqi Chen, Zhi Li, Wenping Zhou, Yuanyuan Lv, Zihua Zhou, Xiang Cheng, Yuhua Liao

Abstract

The antibody against AT1-EC2 plays a role in some kinds of inflammatory vascular diseases including malignant hypertension, preeclampsia, and renal-allograft rejection, but the detailed mechanisms remain unclear. In order to investigate the changes of NADPH oxidase and reactive oxygen species in the aorta in a mouse model which can produce AT1-EC2 antibody by active immunization with AT1-EC2 peptide, 15 mice were divided into three groups: control group, AT1-EC2-immunized group, and AT1-EC2-immunized and valsartan-treated group. In AT1-EC2-immunized group and AT1-EC2-immunized and valsartan-treated group, the mice were immunized by 50 μg peptide subcutaneously at multiple points for 4 times: 0, 5, 10, and 15 days after the experiment. In AT1-EC2-immunized and valsartan-treated group, valsartan was given at a dose of 100 mg/kg every day for 20 days. After the experiment, the mice were sacrificed under anesthesia and the aortas were obtained and frozen in liquid nitrogen for the preparation of frozen section slides and other experiments. The titer of AT1-EC2 was assayed by using ELISA. The level of NOX1 mRNA in the aorta was determined by using RT-PCR. The expression of NOX1 was detected by using Western blotting. Confocal scanning microscopy was used to assay the α-actin and NOX1 expression in the aortic tissue. The O(2)∸ production was detected in situ after DHE staining. The mice produced high level antibody against AT1-EC2 in AT1-EC2-immunized group and AT1-EC2-immunized and valsartan-treated group, and the level of NOX1 mRNA in the aortic tissues was 1.6±0.4 times higher and the NOX1 protein expression was higher in AT1-EC2-immunized group than in control group. There were no significant differences in the level of NOX1 mRNA and protein expression between control group and AT1-EC2-immunized and valsartan-treated group. The expression and co-localization of α-actin and NOX1 in AT1-EC2-immunized group increased significantly as compared with those in control group, and the O(2)∸ production increased about 2.7 times as compared with control group. There were no significant differences between control group and AT1-EC2-immunized and valsartan-treated group. It is concluded that active immunization with AT1-EC2 can activate NOX1-ROS, and increase vascular inflammation, which can be inhibited by AT1 receptor blocker valsartan. This may partially explain the mechanism of the pathogenesis of inflammatory vascular diseases related to antibody against AT1-EC2.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 8%
Unknown 12 92%

Demographic breakdown

Readers by professional status Count As %
Unspecified 3 23%
Student > Master 2 15%
Researcher 2 15%
Student > Ph. D. Student 1 8%
Student > Doctoral Student 1 8%
Other 1 8%
Unknown 3 23%
Readers by discipline Count As %
Medicine and Dentistry 4 31%
Unspecified 3 23%
Veterinary Science and Veterinary Medicine 1 8%
Agricultural and Biological Sciences 1 8%
Biochemistry, Genetics and Molecular Biology 1 8%
Other 0 0%
Unknown 3 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 August 2012.
All research outputs
#20,655,488
of 25,373,627 outputs
Outputs from Current Medical Science
#409
of 719 outputs
Outputs of similar age
#146,422
of 186,025 outputs
Outputs of similar age from Current Medical Science
#5
of 10 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 719 research outputs from this source. They receive a mean Attention Score of 2.8. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 186,025 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 5 of them.