↓ Skip to main content

Estimating ecosystem metabolism from continuous multi-sensor measurements in the Seine River

Overview of attention for article published in Environmental Science and Pollution Research, June 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
57 Mendeley
Title
Estimating ecosystem metabolism from continuous multi-sensor measurements in the Seine River
Published in
Environmental Science and Pollution Research, June 2016
DOI 10.1007/s11356-016-7096-0
Pubmed ID
Authors

N. Escoffier, N. Bensoussan, L. Vilmin, N. Flipo, V. Rocher, A. David, F. Métivier, A. Groleau

Abstract

Large rivers are important components of the global C cycle. While they are facing an overall degradation of their water quality, little remains known about the dynamics of their metabolism. In the present study, we used continuous multi-sensors measurements to assess the temporal variability of gross primary production (GPP) and ecosystem respiration (ER) rates of the anthropized Seine River over an annual cycle. Downstream from the Paris urban area, the Seine River is net heterotrophic at the annual scale (-226 gO2 m(-2) year(-1) or -264 gC m(-2) year(-1)). Yet, it displays a net autotrophy at the daily and seasonal scales during phytoplankton blooms occurring from late winter to early summer. Multivariate analyses were performed to identify the drivers of river metabolism. Daily GPP is best predicted by chlorophyll a (Chla), water temperature (T), light, and rainfalls, and the coupling of daily GPP and Chla allows for the estimation of the productivity rates of the different phytoplankton communities. ER rates are mainly controlled by T and, to a lesser extent, by Chla. The increase of combined sewer overflows related to storm events during the second half of the year stimulates ER and the net heterotrophy of the river. River metabolism is, thus, controlled at different timescales by factors that are affected by human pressures. Continuous monitoring of river metabolism must, therefore, be pursued to deepen our understanding about the responses of ecosystem processes to changing human pressures and climate.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 57 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 23%
Student > Ph. D. Student 11 19%
Student > Master 7 12%
Other 3 5%
Professor 3 5%
Other 5 9%
Unknown 15 26%
Readers by discipline Count As %
Environmental Science 17 30%
Earth and Planetary Sciences 7 12%
Agricultural and Biological Sciences 4 7%
Biochemistry, Genetics and Molecular Biology 2 4%
Engineering 2 4%
Other 5 9%
Unknown 20 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2019.
All research outputs
#21,420,714
of 23,911,072 outputs
Outputs from Environmental Science and Pollution Research
#7,000
of 9,883 outputs
Outputs of similar age
#313,737
of 357,894 outputs
Outputs of similar age from Environmental Science and Pollution Research
#109
of 160 outputs
Altmetric has tracked 23,911,072 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,883 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 357,894 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 160 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.