↓ Skip to main content

Reconstituted high density lipoprotein mediated targeted co-delivery of HZ08 and paclitaxel enhances the efficacy of paclitaxel in multidrug-resistant MCF-7 breast cancer cells

Overview of attention for article published in European Journal of Pharmaceutical Sciences, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reconstituted high density lipoprotein mediated targeted co-delivery of HZ08 and paclitaxel enhances the efficacy of paclitaxel in multidrug-resistant MCF-7 breast cancer cells
Published in
European Journal of Pharmaceutical Sciences, June 2016
DOI 10.1016/j.ejps.2016.06.017
Pubmed ID
Authors

Fangrong Zhang, Xiaoyi Wang, Xiangting Xu, Min Li, Jianping Zhou, Wei Wang

Abstract

In the past decades, reconstituted high density lipoprotein (rHDL) has been successfully developed as a drug carrier since the enhanced HDL-lipids uptake is demonstrated in several human cancers. In this paper, rHDL, for the first time, was utilized to co-encapsulate two hydrophobic drugs: an anticancer drug, paclitaxel (PTX), and a new reversal agent for P-gp (P-glycoprotein)-mediated multidrug resistance (MDR) of cancer, N-cyano-1-[(3,4-dimethoxyphenyl)methyl]-3,4-dihydro-6,7-dimethoxy-N'-octyl-2(1H)-isoquinoline-carboximidamide (HZ08). We proposed this drug co-delivery strategy to reverse PTX resistance. The study aimed to develop a biomimetic nanovector, reconstituted high density lipoprotein (rHDL), mediating targeted PTX-HZ08 delivery for cancer therapy. Using sodium cholate dialysis method, we successfully formulated dual-agent co-delivering rHDL nanoparticles (PTX-HZ08-rHDL NPs) with a typical spherical morphology, well-distributed size (~100nm), high drug encapsulation efficiency (approximately 90%), sustained drug release properties and exceptional stability even after storage for 1month or incubation in 10% fetal bovine serum (FBS) DMEM for up to 2days. Results demonstrated that PTX-HZ08-rHDL NPs significantly enhanced anticancer efficacy in vitro, including higher cytotoxicity and better ability to induce cell apoptosis against both PTX-sensitive and -resistant MCF-7 human breast cancer cell lines (MCF-7 and MCF-7/PTX cells). Mechanism studies demonstrated that these improvements could be correlated with increased cellular uptake of PTX mediated by scavenger receptor class B type I (SR-BI) as well as prolonged intracellular retention of PTX due to the HZ08 mediated drug-efflux inhibition. In addition, in vivo investigation showed that the PTX-HZ08-rHDL NPs were substantially safer, have higher tumor-targeted capacity and have stronger antitumor activity than the corresponding dosage of paclitaxel injection. These findings suggested that rHDL NPs could be an ideal tumor-targeted nanovector for simultaneous transfer of insoluble anticancer drug and drug resistance reversal agents. The PTX-HZ08-rHDL NPs co-delivery system might be a new promising strategy to overcome tumor drug resistance.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 24%
Student > Ph. D. Student 3 12%
Lecturer 2 8%
Student > Doctoral Student 2 8%
Lecturer > Senior Lecturer 1 4%
Other 3 12%
Unknown 8 32%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 4 16%
Biochemistry, Genetics and Molecular Biology 3 12%
Agricultural and Biological Sciences 2 8%
Medicine and Dentistry 2 8%
Nursing and Health Professions 1 4%
Other 5 20%
Unknown 8 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 August 2016.
All research outputs
#3,709,974
of 25,371,288 outputs
Outputs from European Journal of Pharmaceutical Sciences
#236
of 2,950 outputs
Outputs of similar age
#64,193
of 368,647 outputs
Outputs of similar age from European Journal of Pharmaceutical Sciences
#15
of 54 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,950 research outputs from this source. They receive a mean Attention Score of 4.4. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 368,647 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.