↓ Skip to main content

Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

Overview of attention for article published in Nature Genetics, September 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

blogs
2 blogs
twitter
7 X users
patent
5 patents
googleplus
1 Google+ user

Citations

dimensions_citation
1175 Dimensions

Readers on

mendeley
830 Mendeley
citeulike
12 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer
Published in
Nature Genetics, September 2012
DOI 10.1038/ng.2396
Pubmed ID
Authors

Martin Peifer, Lynnette Fernández-Cuesta, Martin L Sos, Julie George, Danila Seidel, Lawryn H Kasper, Dennis Plenker, Frauke Leenders, Ruping Sun, Thomas Zander, Roopika Menon, Mirjam Koker, Ilona Dahmen, Christian Müller, Vincenzo Di Cerbo, Hans-Ulrich Schildhaus, Janine Altmüller, Ingelore Baessmann, Christian Becker, Bram de Wilde, Jo Vandesompele, Diana Böhm, Sascha Ansén, Franziska Gabler, Ines Wilkening, Stefanie Heynck, Johannes M Heuckmann, Xin Lu, Scott L Carter, Kristian Cibulskis, Shantanu Banerji, Gad Getz, Kwon-Sik Park, Daniel Rauh, Christian Grütter, Matthias Fischer, Laura Pasqualucci, Gavin Wright, Zoe Wainer, Prudence Russell, Iver Petersen, Yuan Chen, Erich Stoelben, Corinna Ludwig, Philipp Schnabel, Hans Hoffmann, Thomas Muley, Michael Brockmann, Walburga Engel-Riedel, Lucia A Muscarella, Vito M Fazio, Harry Groen, Wim Timens, Hannie Sietsma, Erik Thunnissen, Egbert Smit, Daniëlle A M Heideman, Peter J F Snijders, Federico Cappuzzo, Claudia Ligorio, Stefania Damiani, John Field, Steinar Solberg, Odd Terje Brustugun, Marius Lund-Iversen, Jörg Sänger, Joachim H Clement, Alex Soltermann, Holger Moch, Walter Weder, Benjamin Solomon, Jean-Charles Soria, Pierre Validire, Benjamin Besse, Elisabeth Brambilla, Christian Brambilla, Sylvie Lantuejoul, Philippe Lorimier, Peter M Schneider, Michael Hallek, William Pao, Matthew Meyerson, Julien Sage, Jay Shendure, Robert Schneider, Reinhard Büttner, Jürgen Wolf, Peter Nürnberg, Sven Perner, Lukas C Heukamp, Paul K Brindle, Stefan Haas, Roman K Thomas

Abstract

Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis. We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4±1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant mutated genes. In all cases, we found evidence for inactivation of TP53 and RB1 and identified recurrent mutations in the CREBBP, EP300 and MLL genes that encode histone modifiers. Furthermore, we observed mutations in PTEN, SLIT2 and EPHA7, as well as focal amplifications of the FGFR1 tyrosine kinase gene. Finally, we detected many of the alterations found in humans in SCLC tumors from Tp53 and Rb1 double knockout mice. Our study implicates histone modification as a major feature of SCLC, reveals potentially therapeutically tractable genomic alterations and provides a generalizable framework for the identification of biologically relevant genes in the context of high mutational background.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 830 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 7 <1%
France 2 <1%
China 2 <1%
Canada 2 <1%
United Kingdom 2 <1%
Netherlands 1 <1%
Germany 1 <1%
Sweden 1 <1%
Switzerland 1 <1%
Other 4 <1%
Unknown 807 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 213 26%
Student > Ph. D. Student 181 22%
Student > Master 61 7%
Student > Bachelor 52 6%
Other 37 4%
Other 137 17%
Unknown 149 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 220 27%
Biochemistry, Genetics and Molecular Biology 199 24%
Medicine and Dentistry 169 20%
Computer Science 13 2%
Chemistry 12 1%
Other 52 6%
Unknown 165 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 24. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 February 2024.
All research outputs
#1,597,720
of 26,017,215 outputs
Outputs from Nature Genetics
#2,324
of 7,655 outputs
Outputs of similar age
#9,810
of 193,447 outputs
Outputs of similar age from Nature Genetics
#23
of 77 outputs
Altmetric has tracked 26,017,215 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,655 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 43.8. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 193,447 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 77 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.