↓ Skip to main content

Radiation exposure and cancer incidence in a cohort of nuclear power industry workers in the Republic of Korea, 1992–2005

Overview of attention for article published in Radiation and Environmental Biophysics, October 2009
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
15 Mendeley
Title
Radiation exposure and cancer incidence in a cohort of nuclear power industry workers in the Republic of Korea, 1992–2005
Published in
Radiation and Environmental Biophysics, October 2009
DOI 10.1007/s00411-009-0247-7
Pubmed ID
Authors

Meeseon Jeong, Young-Woo Jin, Kwang Hee Yang, Yoon-Ok Ahn, Chang-Yong Cha

Abstract

This study examines for the first time cancer incidence between radiation and non-radiation workers in nuclear power facilities in the Republic of Korea. Radiation workers were defined as persons who were issued with a dosimeter at nuclear power facilities, until 2005. All analyses were conducted on male workers only (in total 16,236 individuals) because of the sparseness of females. Statistical analyses were carried out using the standardized incidence ratio (SIR), to compare the cancer risks of radiation and non-radiation workers with those of the general population, and the chi(2) trend test was used to investigate any increase in cancer rates with dose. Poisson regression was also used to estimate the rate ratio (RR) and the excess relative risk (ERR) after considering the confounding effect due to smoking. During 1992-2005, 99 cancer cases in 63,503 person-years were observed among 8,429 radiation workers, while 104 cancer cases were observed in 48,301 person-years among 7,807 non-radiation workers. When compared with the site- and age-specific cancer rates for the male population of Korea, the SIR for all cancers combined was 1.07 [95% confidence interval (CI) 0.87-1.30] for radiation workers, and 0.88 (95% CI 0.72-1.06) for non-radiation workers, respectively. The RR for radiation workers compared with non-radiation workers was 1.18 (95% CI 0.89-1.58) for all cancers combined. The SIRs for thyroid cancer were noticeably high for both radiation and non-radiation workers, possibly due to the screening effect, but analysis of the RR showed that there was no statistically significant difference in thyroid cancer incidence rates between the two groups. For lung cancer, radiation workers showed a higher incidence rate as compared to non-radiation workers, with the RR being 3.48 (95% CI 1.19-11.48). A chi(2) trend test showed that there was no evidence for an increase in cancer rate with increasing cumulative dose for all cancers combined (p = 0.5108). The ERR per Sievert was estimated to be 1.69 (95% CI -2.07 to 8.21) for all cancers combined assuming a 10 years lag time. Consequently, a significant excess of cancer incidence among radiation workers in the nuclear power industry in Korea was not observed. Further follow-up and an expansion of the cohort are needed to overcome the lack of statistical power in the study.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 7%
Unknown 14 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 27%
Researcher 2 13%
Professor 1 7%
Student > Doctoral Student 1 7%
Student > Master 1 7%
Other 1 7%
Unknown 5 33%
Readers by discipline Count As %
Medicine and Dentistry 5 33%
Physics and Astronomy 2 13%
Nursing and Health Professions 1 7%
Computer Science 1 7%
Unknown 6 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 September 2012.
All research outputs
#16,049,105
of 23,815,455 outputs
Outputs from Radiation and Environmental Biophysics
#331
of 456 outputs
Outputs of similar age
#79,885
of 95,493 outputs
Outputs of similar age from Radiation and Environmental Biophysics
#3
of 4 outputs
Altmetric has tracked 23,815,455 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 456 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 95,493 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.