↓ Skip to main content

Monitoring of bioaerosol inhalation risks in different environments using a six-stage Andersen sampler and the PCR-DGGE method

Overview of attention for article published in Environmental Monitoring and Assessment, September 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
74 Mendeley
Title
Monitoring of bioaerosol inhalation risks in different environments using a six-stage Andersen sampler and the PCR-DGGE method
Published in
Environmental Monitoring and Assessment, September 2012
DOI 10.1007/s10661-012-2844-1
Pubmed ID
Authors

Zhenqiang Xu, Maosheng Yao

Abstract

Increasing evidences show that inhalation of indoor bioaerosols has caused numerous adverse health effects and diseases. However, the bioaerosol size distribution, composition, and concentration level, representing different inhalation risks, could vary with different living environments. The six-stage Andersen sampler is designed to simulate the sampling of different human lung regions. Here, the sampler was used in investigating the bioaerosol exposure in six different environments (student dorm, hospital, laboratory, hotel room, dining hall, and outdoor environment) in Beijing. During the sampling, the Andersen sampler was operated for 30 min for each sample, and three independent experiments were performed for each of the environments. The air samples collected onto each of the six stages of the sampler were incubated on agar plates directly at 26 °C, and the colony forming units (CFU) were manually counted and statistically corrected. In addition, the developed CFUs were washed off the agar plates and subjected to polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Results revealed that for most environments investigated, the culturable bacterial aerosol concentrations were higher than those of culturable fungal aerosols. The culturable bacterial and fungal aerosol fractions, concentration, size distribution, and diversity were shown to vary significantly with the sampling environments. PCR-DGGE analysis indicated that different environments had different culturable bacterial aerosol compositions as revealed by distinct gel band patterns. For most environments tested, larger (>3 μm) culturable bacterial aerosols with a skewed size distribution were shown to prevail, accounting for more than 60 %, while for culturable fungal aerosols with a normal size distribution, those 2.1-4.7 μm dominated, accounting for 20-40 %. Alternaria, Cladosporium, Chaetomium, and Aspergillus were found abundant in most environments studied here. Viable microbial load per unit of particulate matter was also shown to vary significantly with the sampling environments. The results from this study suggested that different environments even with similar levels of total microbial culturable aerosol concentrations could present different inhalation risks due to different bioaerosol particle size distribution and composition. This work fills literature gaps regarding bioaerosol size and composition-based exposure risks in different human dwellings in contrast to a vast body of total bioaerosol levels.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 3%
Japan 1 1%
Finland 1 1%
Sweden 1 1%
Unknown 69 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 20%
Student > Master 9 12%
Student > Bachelor 8 11%
Researcher 8 11%
Student > Doctoral Student 7 9%
Other 15 20%
Unknown 12 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 23%
Environmental Science 14 19%
Engineering 8 11%
Immunology and Microbiology 4 5%
Medicine and Dentistry 4 5%
Other 12 16%
Unknown 15 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 October 2012.
All research outputs
#21,358,731
of 23,854,458 outputs
Outputs from Environmental Monitoring and Assessment
#2,266
of 2,748 outputs
Outputs of similar age
#152,918
of 170,764 outputs
Outputs of similar age from Environmental Monitoring and Assessment
#29
of 31 outputs
Altmetric has tracked 23,854,458 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,748 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 170,764 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.