↓ Skip to main content

Interpretable per case weighted ensemble method for cancer associations

Overview of attention for article published in BMC Genomics, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
11 Mendeley
citeulike
1 CiteULike
Title
Interpretable per case weighted ensemble method for cancer associations
Published in
BMC Genomics, July 2016
DOI 10.1186/s12864-016-2647-9
Pubmed ID
Authors

Adrin Jalali, Nico Pfeifer

Abstract

Molecular measurements from cancer patients such as gene expression and DNA methylation can be influenced by several external factors. This makes it harder to reproduce the exact values of measurements coming from different laboratories. Furthermore, some cancer types are very heterogeneous, meaning that there might be different underlying causes for the same type of cancer among different individuals. If a model does not take potential biases in the data into account, this can lead to problems when trying to predict the stage of a certain cancer type. This is especially true when these biases differ between the training and test set. We introduce a method that can estimate this bias on a per-feature level and incorporate calculated feature confidences into a weighted combination of classifiers with disjoint feature sets. In this way, the method provides a prediction that is adjusted for the potential biases on a per-patient basis, providing a personalized prediction for each test patient. The new method achieves state-of-the-art performance on many different cancer data sets with measured DNA methylation or gene expression. Moreover, we show how to visualize the learned classifiers to display interesting associations with the target label. Applied to a leukemia data set, our method finds several ribosomal proteins associated with the risk group, which might be interesting targets for follow-up studies. This discovery supports the hypothesis that the ribosomes are a new frontier in genadaptivelearninge regulation. We introduce a new method for robust prediction of phenotypes from molecular measurements such as DNA methylation or gene expression. Furthermore, the visualization capabilities enable exploratory analysis on the learnt dependencies and pave the way for a personalized prediction of phenotypes. The software is available under GPL2+ from https://github.com/adrinjalali/Network-Classifier/tree/v1.0 .

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 45%
Student > Ph. D. Student 2 18%
Student > Master 2 18%
Professor > Associate Professor 1 9%
Unknown 1 9%
Readers by discipline Count As %
Computer Science 3 27%
Agricultural and Biological Sciences 2 18%
Nursing and Health Professions 2 18%
Arts and Humanities 1 9%
Biochemistry, Genetics and Molecular Biology 1 9%
Other 1 9%
Unknown 1 9%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2017.
All research outputs
#14,102,908
of 23,881,329 outputs
Outputs from BMC Genomics
#5,162
of 10,793 outputs
Outputs of similar age
#202,452
of 367,405 outputs
Outputs of similar age from BMC Genomics
#126
of 272 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,793 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 367,405 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 272 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.