↓ Skip to main content

Mice with sclerostin gene deletion are resistant to the severe sublesional bone loss induced by spinal cord injury

Overview of attention for article published in Osteoporosis International, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
25 Mendeley
Title
Mice with sclerostin gene deletion are resistant to the severe sublesional bone loss induced by spinal cord injury
Published in
Osteoporosis International, July 2016
DOI 10.1007/s00198-016-3700-x
Pubmed ID
Authors

W. Qin, W. Zhao, X. Li, Y. Peng, L. M. Harlow, J. Li, Y. Qin, J. Pan, Y. Wu, L. Ran, H. Z. Ke, C. P. Cardozo, W. A. Bauman

Abstract

Bone loss after spinal cord injury (SCI) is rapid, severe, and refractory to interventions studied to date. Mice with sclerostin gene deletion are resistant to the severe sublesional bone loss induced by SCI, further indicating pharmacological inhibition of sclerostin may represent a promising novel approach to this challenging medical problem. The bone loss secondary to spinal cord injury (SCI) is associated with several unique pathological features, including the permanent immobilization, neurological dysfunction, and systemic hormonal alternations. It remains unclear how these complex pathophysiological changes are linked to molecular alterations that influence bone metabolism in SCI. Sclerostin is a key negative regulator of bone formation and bone mass. We hypothesized that sclerostin could function as a major mediator of bone loss following SCI. To test this hypothesis, 10-week-old female sclerostin knockout (SOST KO) and wild type (WT) mice underwent complete spinal cord transection or laminectomy (Sham). At 8 weeks after SCI, substantial loss of bone mineral density was observed at the distal femur and proximal tibia in WT mice but not in SOST KO mice. By μCT, trabecular bone volume of the distal femur was markedly decreased by 64 % in WT mice after SCI. In striking contrast, there was no significant reduction of bone volume in SOST KO/SCI mice compared with SOST KO/sham. Histomorphometric analysis of trabecular bone revealed that the significant reduction in bone formation rate following SCI was observed in WT mice but not in SOST KO mice. Moreover, SCI did not alter osteoblastogenesis of marrow stromal cells in SOST KO mice. Our findings demonstrate that SOST KO mice were protected from the major sublesional bone loss that invariably follows SCI. The evidence indicates that sclerostin is an important mediator of the marked sublesional bone loss after SCI, and that pharmacological inhibition of sclerostin may represent a promising novel approach to this challenging clinical problem.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 28%
Student > Master 4 16%
Researcher 4 16%
Professor 1 4%
Other 1 4%
Other 2 8%
Unknown 6 24%
Readers by discipline Count As %
Medicine and Dentistry 9 36%
Biochemistry, Genetics and Molecular Biology 2 8%
Chemistry 2 8%
Neuroscience 2 8%
Nursing and Health Professions 1 4%
Other 1 4%
Unknown 8 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 July 2016.
All research outputs
#14,857,330
of 22,881,154 outputs
Outputs from Osteoporosis International
#2,219
of 3,615 outputs
Outputs of similar age
#223,885
of 363,722 outputs
Outputs of similar age from Osteoporosis International
#42
of 79 outputs
Altmetric has tracked 22,881,154 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,615 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 363,722 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 79 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.