↓ Skip to main content

Run-on gene transcription in human neocortical nuclei

Overview of attention for article published in Journal of Molecular Neuroscience, January 1998
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
61 Dimensions

Readers on

mendeley
24 Mendeley
Title
Run-on gene transcription in human neocortical nuclei
Published in
Journal of Molecular Neuroscience, January 1998
DOI 10.1385/jmn:11:1:67
Pubmed ID
Authors

Walter J. Lukiw, Hector J. LeBlanc, Larry A. Carver, Donald R. C. McLachlan, Nicolas G. Bazan

Abstract

The incorporation of [alpha-32P]-uridine triphosphate into DNA transcription products was examined in short post-mortem interval (PMI) human brain neocortical nuclei (n, 22; PMI, 0.5-24 h) using run-on-gene transcription. Reverse Northern dot-blot hybridization of newly synthesized RNA against either total cDNA or Alu repetitive DNA indicated that human brain neocortical nuclei of up to 4-h PMI were efficient in incorporating radiolabel into new transcription products, after which there was a graded decline in de novo RNA biosynthetic capacity. To test the effects of 0-3000 nM concentrations of ambient aluminum on RNA polymerase I (RNAP I) and RNA polymerase II (RNAP II) transcription, dot blots containing 0.5, 1.0, 2.0, and 5.0 micrograms of DNA for (1) the human-specific Alu repetitive element (2) the neurofilament light (NFL) chain, and (3) glial fibrillary acidic protein (GFAP) were Northern hybridized against newly synthesized radiolabeled total RNA. These DNAs represent heterogeneous nuclear RNA (hnRNA), neuronal-, and glial-specific markers, respectively. We report here a dose-dependent repression in the biosynthetic capabilities of brain RNAP II in the range of 50-100 nM aluminum, deficits similar to those previously described using a rabbit neocortical nuclei transcription system and at concentrations that have been reported in Alzheimer's disease (AD) euchromatin. Transcription from RNAP II and the neuron-specific NFL gene in the presence of aluminum was found to be particularly affected. These findings support the hypothesis that brain gene transcription in the presence of trace amounts of ambient aluminum impairs mammalian brain DNA to adequately read out genetic information.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 25%
Student > Ph. D. Student 5 21%
Other 3 13%
Student > Bachelor 3 13%
Lecturer 2 8%
Other 3 13%
Unknown 2 8%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 29%
Agricultural and Biological Sciences 2 8%
Pharmacology, Toxicology and Pharmaceutical Science 2 8%
Psychology 2 8%
Medicine and Dentistry 2 8%
Other 5 21%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 July 2016.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from Journal of Molecular Neuroscience
#1,330
of 1,643 outputs
Outputs of similar age
#93,278
of 94,808 outputs
Outputs of similar age from Journal of Molecular Neuroscience
#12
of 12 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,643 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 94,808 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.