↓ Skip to main content

The long-term impacts of anthropogenic and natural processes on groundwater deterioration in a multilayered aquifer

Overview of attention for article published in Science of the Total Environment, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
80 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The long-term impacts of anthropogenic and natural processes on groundwater deterioration in a multilayered aquifer
Published in
Science of the Total Environment, March 2018
DOI 10.1016/j.scitotenv.2018.02.190
Pubmed ID
Authors

Tahoora Sheikhy Narany, Anuar Sefie, Ahmad Zaharin Aris

Abstract

In many regions around the world, there are issues associated with groundwater resources due to human and natural factors. However, the relation between these factors is difficult to determine due to the large number of parameters and complex processes required. In order to understand the relation between land use allocations, the intrinsic factors of the aquifer, climate change data and groundwater chemistry in the multilayered aquifer system in Malaysia's Northern Kelantan Basin, twenty-two years hydrogeochemical data set was used in this research. The groundwater salinisation in the intermediate aquifer, which mainly extends along the coastal line, was revealed through the hydrogeochemical investigation. Even so, there had been no significant trend detected on groundwater salinity from 1989 to 2011. In contrast to salinity, as seen from the nitrate contaminations there had been significantly increasing trends in the shallow aquifer, particularly in the central part of the study area. Additionally, a strong association between high nitrate values and the areas covered with palm oil cultivations and mixed agricultural have been detected by a multiple correspondence analysis (MCA), which implies that the increasing nitrate concentrations are associated with nitrate loading from the application of N-fertilisers. From the process of groundwater salinisation in the intermediate aquifer, could be seen that it has a strong correlation the aquifer lithology, specifically marine sediments which are influenced by the ancient seawater trapped within the sediments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 80 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 80 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 20%
Student > Master 10 13%
Student > Bachelor 8 10%
Student > Doctoral Student 6 8%
Researcher 5 6%
Other 11 14%
Unknown 24 30%
Readers by discipline Count As %
Environmental Science 16 20%
Engineering 9 11%
Agricultural and Biological Sciences 9 11%
Earth and Planetary Sciences 7 9%
Chemical Engineering 3 4%
Other 8 10%
Unknown 28 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 July 2018.
All research outputs
#16,584,977
of 25,382,440 outputs
Outputs from Science of the Total Environment
#18,091
of 29,635 outputs
Outputs of similar age
#211,853
of 348,050 outputs
Outputs of similar age from Science of the Total Environment
#333
of 563 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 29,635 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,050 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 563 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.