↓ Skip to main content

RAPD Markers Associated with Salt Tolerance in Soybean Genotypes Under Salt Stress

Overview of attention for article published in Applied Biochemistry and Biotechnology, March 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RAPD Markers Associated with Salt Tolerance in Soybean Genotypes Under Salt Stress
Published in
Applied Biochemistry and Biotechnology, March 2013
DOI 10.1007/s12010-013-0182-6
Pubmed ID
Authors

Faheema Khan, Khalid Rehman Hakeem, Tariq O. Siddiqi, Altaf Ahmad

Abstract

In order to investigate the influence of genetic background on salt tolerance in soybean (Glycine max), ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) released in India, were selected and grown hydroponically. The 10-day-old seedlings were subjected to 0, 25, 50, 75, 100, 125, and 150 mM NaCl for 15 days. Plant growth, leaf osmotic adjustment, and random amplified polymorphic DNA (RAPD) analysis were studied. In comparison to control plants, the plant growth in all genotypes was decreased by salt stress, respectively. Salt stress decreased leaf osmotic potential in all genotypes; however, the maximum reduction was observed in genotype Pusa-24 followed by PK-416 and Pusa-20, while minimum reduction was shown by genotype Pusa-37, followed by BRAGG and PK-1042. Pusa-16, Pusa-22, Pusa-40, and DS-9712 were able to tolerate NaCl treatment up to the level of 75 Mm. The difference in osmotic adjustment between all the genotypes was correlated with the concentrations of ion examined such as Na(+) and the leaf proline concentration. These results suggest that the genotypic variation for salt tolerance can be partially accounted by plant physiological measures. Twenty RAPD primers revealed high polymorphism and genetic variation among ten soybean genotypes studied. The closer varieties in the cluster behaved similarly in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the ten genotypes in sub-cluster as expected from their physiological findings. Our study shows that RAPD technique is a sensitive, precise, and efficient tool for genomic analysis in soybean genotypes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 26%
Student > Ph. D. Student 6 19%
Student > Bachelor 5 16%
Student > Postgraduate 3 10%
Student > Master 2 6%
Other 4 13%
Unknown 3 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 65%
Environmental Science 2 6%
Biochemistry, Genetics and Molecular Biology 1 3%
Immunology and Microbiology 1 3%
Psychology 1 3%
Other 1 3%
Unknown 5 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 March 2013.
All research outputs
#15,266,089
of 22,701,287 outputs
Outputs from Applied Biochemistry and Biotechnology
#1,548
of 2,496 outputs
Outputs of similar age
#123,388
of 196,549 outputs
Outputs of similar age from Applied Biochemistry and Biotechnology
#16
of 20 outputs
Altmetric has tracked 22,701,287 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,496 research outputs from this source. They receive a mean Attention Score of 3.2. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 196,549 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.