↓ Skip to main content

Green-synthesized CdS nano-pesticides: Toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata

Overview of attention for article published in Aquatic Toxicology, April 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
106 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Green-synthesized CdS nano-pesticides: Toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata
Published in
Aquatic Toxicology, April 2017
DOI 10.1016/j.aquatox.2017.04.015
Pubmed ID
Authors

Vasu Sujitha, Kadarkarai Murugan, Devakumar Dinesh, Amuthvalli Pandiyan, Rajasekar Aruliah, Jiang-Shiou Hwang, Kandasamy Kalimuthu, Chellasamy Panneerselvam, Akon Higuchi, Al Thabiani Aziz, Suresh Kumar, Abdullah A. Alarfaj, Baskaralingam Vaseeharan, Angelo Canale, Giovanni Benelli

Abstract

Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensi and A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparum parasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV-vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of V. pachynema extract was 58.1μg/ml (CQ-s) and 71.46μg/ml (CQ-r), while nano-CdS IC50 was 76.14μg/ml (CQ-s) and 89.21μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of CdS nanoparticles and Cd ions in aqueous solution was also assessed in mud crabs, showing higher toxicity of aqueous Cd ions if compared to nano-CdS. Overall, our results underlined the efficacy of green-synthesized CdS nanoparticles in malaria vector control, outlining also significant impacts on the enzymatic activity of non-target aquatic organisms, with special reference to mud crabs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 106 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 106 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 19%
Student > Bachelor 17 16%
Student > Master 11 10%
Other 8 8%
Researcher 8 8%
Other 9 8%
Unknown 33 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 11%
Biochemistry, Genetics and Molecular Biology 11 10%
Environmental Science 10 9%
Pharmacology, Toxicology and Pharmaceutical Science 8 8%
Chemistry 5 5%
Other 22 21%
Unknown 38 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 October 2017.
All research outputs
#19,962,154
of 25,394,764 outputs
Outputs from Aquatic Toxicology
#1,751
of 2,665 outputs
Outputs of similar age
#233,681
of 323,703 outputs
Outputs of similar age from Aquatic Toxicology
#9
of 26 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,665 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,703 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.