↓ Skip to main content

Adult muscle-derived stem cells engraft and differentiate into insulin-expressing cells in pancreatic islets of diabetic mice

Overview of attention for article published in Stem Cell Research & Therapy, April 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Adult muscle-derived stem cells engraft and differentiate into insulin-expressing cells in pancreatic islets of diabetic mice
Published in
Stem Cell Research & Therapy, April 2017
DOI 10.1186/s13287-017-0539-9
Pubmed ID
Authors

Violeta Mitutsova, Wendy Wai Yeng Yeo, Romain Davaze, Celine Franckhauser, El-Habib Hani, Syahril Abdullah, Patrice Mollard, Marie Schaeffer, Anne Fernandez, Ned J. C. Lamb

Abstract

Pancreatic beta cells are unique effectors in the control of glucose homeostasis and their deficiency results in impaired insulin production leading to severe diabetic diseases. Here, we investigated the potential of a population of nonadherent muscle-derived stem cells (MDSC) from adult mouse muscle to differentiate in vitro into beta cells when transplanted as undifferentiated stem cells in vivo to compensate for beta-cell deficiency. In vitro, cultured MDSC spontaneously differentiated into insulin-expressing islet-like cell clusters as revealed using MDSC from transgenic mice expressing GFP or mCherry under the control of an insulin promoter. Differentiated clusters of beta-like cells co-expressed insulin with the transcription factors Pdx1, Nkx2.2, Nkx6.1, and MafA, and secreted significant levels of insulin in response to glucose challenges. In vivo, undifferentiated MDSC injected into streptozotocin (STZ)-treated mice engrafted within 48 h specifically to damaged pancreatic islets and were shown to differentiate and express insulin 10-12 days after injection. In addition, injection of MDSC into hyperglycemic diabetic mice reduced their blood glucose levels for 2-4 weeks. These data show that MDSC are capable of differentiating into mature pancreatic beta islet-like cells, not only upon culture in vitro, but also in vivo after systemic injection in STZ-induced diabetic mouse models. Being nonteratogenic, MDSC can be used directly by systemic injection, and this potential reveals a promising alternative avenue in stem cell-based treatment of beta-cell deficiencies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 16%
Student > Master 5 13%
Researcher 5 13%
Student > Ph. D. Student 4 11%
Other 2 5%
Other 3 8%
Unknown 13 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 24%
Medicine and Dentistry 6 16%
Agricultural and Biological Sciences 6 16%
Nursing and Health Professions 1 3%
Immunology and Microbiology 1 3%
Other 1 3%
Unknown 14 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 April 2017.
All research outputs
#6,969,786
of 23,305,591 outputs
Outputs from Stem Cell Research & Therapy
#671
of 2,453 outputs
Outputs of similar age
#108,713
of 311,141 outputs
Outputs of similar age from Stem Cell Research & Therapy
#18
of 52 outputs
Altmetric has tracked 23,305,591 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 2,453 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,141 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.