↓ Skip to main content

MiRNA Transcriptome Profiling of Spheroid-Enriched Cells with Cancer Stem Cell Properties in Human Breast MCF-7 Cell Line

Overview of attention for article published in International Journal of Biological Sciences, February 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
1 news outlet
twitter
4 X users

Citations

dimensions_citation
78 Dimensions

Readers on

mendeley
111 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MiRNA Transcriptome Profiling of Spheroid-Enriched Cells with Cancer Stem Cell Properties in Human Breast MCF-7 Cell Line
Published in
International Journal of Biological Sciences, February 2016
DOI 10.7150/ijbs.12777
Pubmed ID
Authors

Lily Boo, Wan Yong Ho, Norlaily Mohd Ali, Swee Keong Yeap, Huynh Ky, Kok Gan Chan, Wai Fong Yin, Dilan Amila Satharasinghe, Woan Charn Liew, Sheau Wei Tan, Han Kiat Ong, Soon Keng Cheong

Abstract

Breast cancer is the second leading cause of cancer-related mortality worldwide as most patients often suffer cancer relapse. The reason is often attributed to the presence of cancer stem cells (CSCs). Recent studies revealed that dysregulation of microRNA (miRNA) are closely linked to breast cancer recurrence and metastasis. However, no specific study has comprehensively characterised the CSC characteristic and miRNA transcriptome in spheroid-enriched breast cells. This study described the generation of spheroid MCF-7 cell in serum-free condition and the comprehensive characterisation for their CSC properties. Subsequently, miRNA expression differences between the spheroid-enriched CSC cells and their parental cells were evaluated using next generation sequencing (NGS). Our results showed that the MCF-7 spheroid cells were enriched with CSCs properties, indicated by the ability to self-renew, increased expression of CSCs markers, and increased resistance to chemotherapeutic drugs. Additionally, spheroid-enriched CSCs possessed greater cell proliferation, migration, invasion, and wound healing ability. A total of 134 significantly (p<0.05) differentially expressed miRNAs were identified between spheroids and parental cells using miRNA-NGS. MiRNA-NGS analysis revealed 25 up-regulated and 109 down-regulated miRNAs which includes some miRNAs previously reported in the regulation of breast CSCs. A number of miRNAs (miR-4492, miR-4532, miR-381, miR-4508, miR-4448, miR-1296, and miR-365a) which have not been previously reported in breast cancer were found to show potential association with breast cancer chemoresistance and self-renewal capability. The gene ontology (GO) analysis showed that the predicted genes were enriched in the regulation of metabolic processes, gene expression, DNA binding, and hormone receptor binding. The corresponding pathway analyses inferred from the GO results were closely related to the function of signalling pathway, self-renewability, chemoresistance, tumorigenesis, cytoskeletal proteins, and metastasis in breast cancer. Based on these results, we proposed that certain miRNAs identified in this study could be used as new potential biomarkers for breast cancer stem cell diagnosis and targeted therapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 111 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 111 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 24%
Student > Master 21 19%
Student > Bachelor 14 13%
Researcher 13 12%
Student > Doctoral Student 6 5%
Other 11 10%
Unknown 19 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 30 27%
Agricultural and Biological Sciences 22 20%
Medicine and Dentistry 13 12%
Immunology and Microbiology 5 5%
Chemistry 5 5%
Other 13 12%
Unknown 23 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 March 2022.
All research outputs
#2,797,590
of 25,394,764 outputs
Outputs from International Journal of Biological Sciences
#73
of 1,313 outputs
Outputs of similar age
#48,388
of 410,116 outputs
Outputs of similar age from International Journal of Biological Sciences
#1
of 32 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,313 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 410,116 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.