↓ Skip to main content

Miscellaneous treatments for antipsychotic‐induced tardive dyskinesia

Overview of attention for article published in Cochrane database of systematic reviews, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)

Mentioned by

twitter
12 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
297 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Miscellaneous treatments for antipsychotic‐induced tardive dyskinesia
Published in
Cochrane database of systematic reviews, March 2018
DOI 10.1002/14651858.cd000208.pub2
Pubmed ID
Authors

Karla Soares‐Weiser, John Rathbone, Yusuke Ogawa, Kiyomi Shinohara, Hanna Bergman

Abstract

Antipsychotic (neuroleptic) medication is used extensively to treat people with chronic mental illnesses. Its use, however, is associated with adverse effects, including movement disorders such as tardive dyskinesia (TD) - a problem often seen as repetitive involuntary movements around the mouth and face. This review, one in a series examining the treatment of TD, covers miscellaneous treatments not covered elsewhere. To determine whether drugs, hormone-, dietary-, or herb-supplements not covered in other Cochrane reviews on TD treatments, surgical interventions, electroconvulsive therapy, and mind-body therapies were effective and safe for people with antipsychotic-induced TD. We searched the Cochrane Schizophrenia Group's Study-Based Register of Trials including trial registers (16 July 2015 and 26 April 2017), inspected references of all identified studies for further trials and contacted authors of trials for additional information. We included reports if they were randomised controlled trials (RCTs) dealing with people with antipsychotic-induced TD and schizophrenia or other chronic mental illnesses who remained on their antipsychotic medication and had been randomly allocated to the interventions listed above versus placebo, no intervention, or any other intervention. We independently extracted data from these trials and we estimated risk ratios (RR) or mean differences (MD), with 95% confidence intervals (CIs). We assumed that people who left early had no improvement. We assessed risk of bias and created 'Summary of findings' tables using GRADE. We included 31 RCTs of 24 interventions with 1278 participants; 22 of these trials were newly included in this 2017 update. Five trials are awaiting classification and seven trials are ongoing. All participants were adults with chronic psychiatric disorders, mostly schizophrenia, and antipsychotic-induced TD. Studies were primarily of short (three to six6 weeks) duration with small samples size (10 to 157 participants), and most (61%) were published more than 20 years ago. The overall risk of bias in these studies was unclear, mainly due to poor reporting of allocation concealment, generation of the sequence, and blinding.Nineteen of the 31 included studies reported on the primary outcome 'No clinically important improvement in TD symptoms'. Two studies found moderate-quality evidence of a benefit of the intervention compared with placebo: valbenazine (RR 0.63, 95% CI 0.46 to 0.86, 1 RCT, n = 92) and extract of Ginkgo biloba (RR 0.88, 95% CI 0.81 to 0.96, 1 RCT, n = 157), respectively. However, due to small sample sizes we cannot be certain of these effects.We consider the results for the remaining interventions to be inconclusive: Low- to very low-quality evidence of a benefit was found for buspirone (RR 0.53, 95% CI 0.33 to 0.84, 1 RCT, n = 42), dihydrogenated ergot alkaloids (RR 0.45, 95% CI 0.21 to 0.97, 1 RCT, n = 28), hypnosis or relaxation, (RR 0.45, 95% CI 0.21 to 0.94, 1 study, n = 15), pemoline (RR 0.48, 95% CI 0.29 to 0.77, 1 RCT, n = 46), promethazine (RR 0.24, 95% CI 0.11 to 0.55, 1 RCT, n = 34), insulin (RR 0.52, 95% CI 0.29 to 0.96, 1 RCT, n = 20), branched chain amino acids (RR 0.79, 95% CI 0.63 to 1.00, 1 RCT, n = 52), and isocarboxazid (RR 0.24, 95% CI 0.08 to 0.71, 1 RCT, n = 20). There was low- to very low-certainty evidence of no difference between intervention and placebo or no treatment for the following interventions: melatonin (RR 0.89, 95% CI 0.71 to 1.12, 2 RCTs, n = 32), lithium (RR 1.59, 95% CI 0.79 to 3.23, 1 RCT, n = 11), ritanserin (RR 1.00, 95% CI 0.70 to 1.43, 1 RCT, n = 10), selegiline (RR 1.37, 95% CI 0.96 to 1.94, 1 RCT, n = 33), oestrogen (RR 1.18, 95% CI 0.76 to 1.83, 1 RCT, n = 12), and gamma-linolenic acid (RR 1.00, 95% CI 0.69 to 1.45, 1 RCT, n = 16).None of the included studies reported on the other primary outcome, 'no clinically significant extrapyramidal adverse effects'. This review has found that the use of valbenazine or extract of Ginkgo biloba may be effective in relieving the symptoms of tardive dyskinesia. However, since only one RCT has investigated each one of these compounds, we are awaiting results from ongoing trials to confirm these results. Results for the remaining interventions covered in this review must be considered inconclusive and these compounds probably should only be used within the context of a well-designed evaluative study.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 297 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 297 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 42 14%
Student > Bachelor 31 10%
Researcher 19 6%
Student > Ph. D. Student 19 6%
Student > Doctoral Student 16 5%
Other 49 16%
Unknown 121 41%
Readers by discipline Count As %
Medicine and Dentistry 67 23%
Nursing and Health Professions 23 8%
Psychology 18 6%
Pharmacology, Toxicology and Pharmaceutical Science 10 3%
Neuroscience 8 3%
Other 40 13%
Unknown 131 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2021.
All research outputs
#3,617,630
of 25,461,852 outputs
Outputs from Cochrane database of systematic reviews
#6,191
of 12,090 outputs
Outputs of similar age
#71,235
of 348,914 outputs
Outputs of similar age from Cochrane database of systematic reviews
#114
of 159 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,090 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.2. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,914 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 159 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.