↓ Skip to main content

Pharmacological treatments for Friedreich ataxia

Overview of attention for article published in Cochrane database of systematic reviews, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
72 Dimensions

Readers on

mendeley
280 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pharmacological treatments for Friedreich ataxia
Published in
Cochrane database of systematic reviews, August 2016
DOI 10.1002/14651858.cd007791.pub4
Pubmed ID
Authors

Mary Kearney, Richard W Orrell, Michael Fahey, Ruth Brassington, Massimo Pandolfo

Abstract

Friedreich ataxia is a rare inherited autosomal recessive neurological disorder, characterised initially by unsteadiness in standing and walking, slowly progressing to wheelchair dependency usually in the late teens or early twenties. It is associated with slurred speech, scoliosis, and pes cavus. Heart abnormalities cause premature death in 60% of people with the disorder. There is no easily defined clinical or biochemical marker and no known treatment. This is the second update of a review first published in 2009 and previously updated in 2012. To assess the effects of pharmacological treatments for Friedreich ataxia. On 29 February 2016 we searched The Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, EMBASE and CINAHL Plus. On 7 March 2016 we searched ORPHANET and TRIP. We also checked clinical trials registers for ongoing studies. We considered randomised controlled trials (RCTs) or quasi-RCTs of pharmacological treatments (including vitamins) in people with genetically-confirmed Friedreich ataxia. The primary outcome was change in a validated Friedreich ataxia neurological score after 12 months. Secondary outcomes were changes in cardiac status as measured by magnetic resonance imaging or echocardiography, quality of life, mild and serious adverse events, and survival. We excluded trials of duration shorter than 12 months. Three review authors selected trials and two review authors extracted data. We obtained missing data from the two RCTs that met our inclusion criteria. We collected adverse event data from included studies. We used standard methodological procedures expected by Cochrane. We identified more than 12 studies that used antioxidants in the treatment of Friedreich ataxia, but only two small RCTs, with a combined total of 72 participants, both fulfilled the selection criteria for this review and published results. One of these trials compared idebenone with placebo, the other compared high-dose versus low-dose coenzyme Q10 and vitamin E (the trialists considered the low-dose medication to be the placebo). We identified two other completed RCTs, which remain unpublished; the interventions in these trials were pioglitazone (40 participants) and idebenone (232 participants). Other RCTs were of insufficient duration for inclusion.In the included studies, the primary outcome specified for the review, change in a validated Friedreich ataxia rating score, was measured using the International Co-operative Ataxia Rating Scale (ICARS). The results did not reveal any significant difference between the antioxidant-treated and the placebo groups (mean difference 0.79 points, 95% confidence interval -1.97 to 3.55 points; low-quality evidence).The published included studies did not assess the first secondary outcome, change in cardiac status as measured by magnetic resonance imaging. Both studies reported changes in cardiac measurements assessed by echocardiogram. The ejection fraction was not measured in the larger of the included studies (44 participants). In the smaller study (28 participants), it was normal at baseline and did not change with treatment. End-diastolic interventricular septal thickness showed a small decrease in the smaller of the two included studies. In the larger included study, there was no decrease, showing significant heterogeneity in the study results; our overall assessment of the quality of evidence for this outcome was very low. Left ventricular mass (LVM) was only available for the smaller RCT, which showed a significant decrease. The relevance of this change is unclear and the quality of evidence low.There were no deaths related to the treatment with antioxidants. We considered the published included studies at low risk of bias in six of seven domains assessed. One unpublished included RCT, a year-long study using idebenone (232 participants), published an interim report in May 2010 stating that the study reached neither its primary endpoint, which was change in the ICARS score, nor a key cardiological secondary endpoint, but data were not available for verification and analysis. Low-quality evidence from two small, published, randomised controlled trials neither support nor refute an effect from antioxidants (idebenone, or a combination of coenzyme Q10 and vitamin E) on the neurological status of people with Friedreich ataxia, measured with a validated neurological rating scale. A large unpublished study of idebenone that reportedly failed to meet neurological or key cardiological endpoints, and a trial of pioglitazone remain unpublished, but on publication will very likely influence quality assessments and conclusions. A single study of idebenone provided low-quality evidence for a decrease in LVM, which is of uncertain clinical significance but of potential importance that needs to be clarified. According to low-quality evidence, serious and non-serious adverse events were rare in both antioxidant and placebo groups. No non-antioxidant agents have been investigated in RCTs of 12 months' duration.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 280 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
South Africa 1 <1%
Unknown 279 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 40 14%
Student > Master 35 13%
Researcher 27 10%
Student > Ph. D. Student 25 9%
Other 15 5%
Other 52 19%
Unknown 86 31%
Readers by discipline Count As %
Medicine and Dentistry 86 31%
Nursing and Health Professions 25 9%
Pharmacology, Toxicology and Pharmaceutical Science 14 5%
Biochemistry, Genetics and Molecular Biology 9 3%
Psychology 9 3%
Other 33 12%
Unknown 104 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 September 2017.
All research outputs
#15,799,182
of 25,457,858 outputs
Outputs from Cochrane database of systematic reviews
#10,126
of 11,499 outputs
Outputs of similar age
#202,151
of 348,317 outputs
Outputs of similar age from Cochrane database of systematic reviews
#203
of 233 outputs
Altmetric has tracked 25,457,858 research outputs across all sources so far. This one is in the 36th percentile – i.e., 36% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,499 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 40.0. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,317 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 233 others from the same source and published within six weeks on either side of this one. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.