↓ Skip to main content

Spectral entropy monitoring for adults and children undergoing general anaesthesia

Overview of attention for article published in Cochrane database of systematic reviews, March 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)

Mentioned by

twitter
5 X users
facebook
2 Facebook pages

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
243 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spectral entropy monitoring for adults and children undergoing general anaesthesia
Published in
Cochrane database of systematic reviews, March 2016
DOI 10.1002/14651858.cd010135.pub2
Pubmed ID
Authors

Anjolie Chhabra, Rajeshwari Subramaniam, Anurag Srivastava, Hemanshu Prabhakar, Mani Kalaivani, Saloni Paranjape

Abstract

Anaesthetic drugs during general anaesthesia are titrated according to sympathetic or somatic responses to surgical stimuli. It is now possible to measure depth of anaesthesia using electroencephalography (EEG). Entropy, an EEG-based monitor can be used to assess the depth of anaesthesia using a strip of electrodes applied to the forehead, and this can guide intraoperative anaesthetic drug administration. The primary objective of this review was to assess the effectiveness of entropy monitoring in facilitating faster recovery from general anaesthesia. We also wanted to assess mortality at 24 hours, 30 days, and one year following general anaesthesia with entropy monitoring.The secondary objectives were to assess the effectiveness of the entropy monitor in: preventing postoperative recall of intraoperative events (awareness) following general anaesthesia; reducing the amount of anaesthetic drugs used; reducing cost of the anaesthetic as well as in reducing time to readiness to leave the postanaesthesia care unit (PACU). We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014, Issue 10), MEDLINE via Ovid SP (1990 to September 2014) and EMBASE via Ovid SP (1990 to September 2014). We reran the search in CENTRAL, MEDLINE via Ovid SP and EMBASE via Ovid SP in January 2016. We added one potential new study of interest to the list of 'Studies awaiting Classification' and we will incorporate this study into the formal review findings during the review update. We included randomized controlled trials (RCTs) conducted in adults and children (aged greater than two years of age), where in one arm entropy monitoring was used for titrating anaesthesia, and in the other standard practice (increase in heart rate, mean arterial pressure, lacrimation, movement in response to noxious surgical stimuli) was used for titrating anaesthetic drug administration. We also included trials with an additional third arm, wherein another EEG monitor, the Bispectral index (BIS) monitor was used to assess anaesthetic depth. We used standard methodological procedures expected by Cochrane. Two review authors independently extracted details of trial methodology and outcome data from trials considered eligible for inclusion. All analyses were made on an intention-to-treat basis. We used a random-effect model where there was heterogeneity. For assessments of the overall quality of evidence for each outcome that included pooled data from RCTs, we downgraded evidence from 'high quality' by one level for serious (or by two for very serious) study limitations (risk of bias, indirectness of evidence, serious inconsistency, imprecision of effect or potential publication bias). We included 11 RCTs (962 participants). Eight RCTs (762 participants) were carried out on adults (18 to 80 years of age), two (128 participants) involved children (two to 16 years) and one RCT (72 participants) included patients aged 60 to 75 years. Of the 11 included studies, we judged three to be at low risk of bias, and the remaining eight RCTs at unclear or high risk of bias.Six RCTs (383 participants) estimated the primary outcome, time to awakening after stopping general anaesthesia, which was reduced in the entropy as compared to the standard practice group (mean difference (MD) -5.42 minutes, 95% confidence interval (CI) -8.77 to -2.08; moderate quality of evidence). We noted heterogeneity for this outcome; on performing subgroup analysis this was found to be due to studies that included participants undergoing major, long duration surgeries (off-pump coronary artery bypass grafting, major urological surgery). The MD for time to awakening with four studies on ambulatory procedures was -3.20 minutes (95% CI -3.94 to -2.45). No trial reported the second primary outcome, mortality at 24 hours, 30 days, and one year with the use of entropy monitoring.Eight trials (797 participants) compared the secondary outcome, postoperative recall of intraoperative events (awareness) in the entropy and standard practice groups. Awareness was reported by only one patient in the standard practice group, making meaningful estimation of benefit of entropy monitoring difficult; moderate quality of evidence.All 11 RCTs compared the amount of anaesthetic agent used between the entropy and standard practice groups. Six RCTs compared the amount of propofol, four compared the amount of sevoflurane and one the amount of isoflurane used between the groups. Analysis of three studies (166 participants) revealed that the MD of propofol consumption between the entropy group and control group was -11.56 mcg/kg/min (95% CI -24.05 to 0.92); low quality of evidence. Analysis of another two studies (156 participants) showed that the MD in sevoflurane consumption in the entropy group compared to the control group was -3.42 mL (95% CI -6.49 to -0.35); moderate quality of evidence.No trial reported on the secondary outcome of the cost of general anaesthesia.Three trials (170 participants) estimated MD in time to readiness to leave the PACU of the entropy group as compared to the control group (MD -5.94 minutes, 95% CI -16.08 to 4.20; low quality of evidence). Heterogeneity was noted, which was due to the difference in anaesthetic technique (propofol-based general anaesthesia) in one study. The remaining two studies had used volatile-based general anaesthesia. The MD in time to readiness to leave the PACU was -4.17 minutes (95% CI -6.84 to -1.51) with these two studies. The evidence as regards time to awakening, recall of intraoperative awareness and reduction in inhalational anaesthetic agent use was of moderate quality. The quality of evidence of as regards reduction in intravenous anaesthetic agent (propofol) use, as well as time to readiness to leave the PACU was found to be of low quality. As the data are limited, further studies consisting of more participants will be required for ascertaining benefits of entropy monitoring.Further studies are needed to assess the effect of entropy monitoring on focal issues such as short-term and long-term mortality, as well as cost of general anaesthesia.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 243 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 242 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 32 13%
Researcher 28 12%
Student > Bachelor 27 11%
Student > Ph. D. Student 18 7%
Other 18 7%
Other 41 17%
Unknown 79 33%
Readers by discipline Count As %
Medicine and Dentistry 81 33%
Nursing and Health Professions 21 9%
Psychology 13 5%
Social Sciences 6 2%
Computer Science 6 2%
Other 26 11%
Unknown 90 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 July 2021.
All research outputs
#7,993,771
of 25,457,858 outputs
Outputs from Cochrane database of systematic reviews
#8,729
of 11,842 outputs
Outputs of similar age
#105,082
of 314,737 outputs
Outputs of similar age from Cochrane database of systematic reviews
#214
of 269 outputs
Altmetric has tracked 25,457,858 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 11,842 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.9. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,737 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 269 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.