↓ Skip to main content

Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies

Overview of attention for article published in Cochrane database of systematic reviews, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)

Mentioned by

twitter
13 X users
facebook
1 Facebook page

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies
Published in
Cochrane database of systematic reviews, May 2017
DOI 10.1002/14651858.cd011872.pub2
Pubmed ID
Authors

Charalampos S Siristatidis, Eleni Sertedaki, Dennis Vaidakis

Abstract

In order to overcome the low effectiveness of assisted reproductive technologies (ART) and the high incidence of multiple births, metabolomics is proposed as a non-invasive method to assess oocyte quality, embryo viability, and endometrial receptivity, and facilitate a targeted subfertility treatment. To evaluate the effectiveness and safety of metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity for improving live birth or ongoing pregnancy rates in women undergoing ART, compared to conventional methods of assessment. We searched the Cochrane Gynaecology and Fertility Group Trials Register, CENTRAL, MEDLINE, Embase, CINAHL and two trial registers (November 2016). We also examined the reference lists of primary studies and review articles, citation lists of relevant publications, and abstracts of major scientific meetings. Randomised controlled trials (RCTs) on metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity in women undergoing ART. Two review authors independently assessed trial eligibility and risk of bias, and extracted the data. The primary outcomes were rates of live birth or ongoing pregnancy (composite outcome) and miscarriage. Secondary outcomes were clinical pregnancy, multiple and ectopic pregnancy, cycle cancellation, and foetal abnormalities. We combined data to calculate odds ratios (ORs) for dichotomous data and 95% confidence intervals (CIs). Statistical heterogeneity was assessed using the I² statistic. We assessed the overall quality of the evidence for the main comparisons using GRADE methods. We included four trials with a total of 802 women, with a mean age of 33 years. All assessed the role of metabolomic investigation of embryo viability. We found no RCTs that addressed the metabolomic assessment of oocyte quality or endometrial receptivity.We found low-quality evidence of little or no difference between metabolomic and non-metabolomic assessment of embryos for rates of live birth or ongoing pregnancy (OR 1.11, 95% CI 0.83 to 1.48; I² = 0%; four RCTs; N = 802), or miscarriage (OR 0.96, 95% CI 0.52 to 1.78; I² = 0%; two RCTs; N = 434). A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for live birth or ongoing pregnancy (OR 0.99, 95% CI 0.71 to 1.38; I² = 0%; two RCTs; N = 621). Our findings suggested that if the rate of live birth or ongoing pregnancy was 36% in the non-metabolomic group, it would be between 32% and 45% with the use of metabolomics.We found low-quality evidence of little or no difference between groups in rates of clinical pregnancy (OR 1.22, 95% CI 0.92 to 1.62; I²= 26%; four trials; N = 802), or multiple pregnancy (OR 1.52, 95% CI 0.71 to 3.23; I² = 0%; two RCTs, N = 181). There was very low-quality evidence of little or no difference between groups in ectopic pregnancy rates (OR 3.37, 95% CI 0.14 to 83.40; one RCT; N = 309), and foetal abnormalities (no events; one RCT; N = 125), and very low-quality evidence of higher rates of cycle cancellation in the metabolomics group (OR 1.78, 95% CI 1.18 to 2.69; I² = 51%; two RCTs; N = 744). Data were lacking on other adverse effects. A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for clinical pregnancy (OR 1.14, 95% CI 0.83 to 1.57; I² = 0%; two RCTs; N = 621).The overall quality of the evidence ranged from very low to low. Limitations included serious risk of bias (associated with poor reporting of methods, attrition bias, selective reporting, and other biases), imprecision, and inconsistency across trials. According to current trials in women undergoing ART, there is insufficient evidence to show that metabolomic assessment of embryos before implantation has any meaningful effect on rates of live birth, ongoing pregnancy, or miscarriage rates. The existing evidence varied from very low to low-quality. Data on adverse events were sparse, so we could not reach conclusions on these. At the moment, there is no evidence to support or refute the use of this technique for subfertile women undergoing ART. Robust evidence is needed from further RCTs, which study the effects on live birth and miscarriage rates for the metabolomic assessment of embryo viability. Well designed and executed trials are also needed to study the effects on oocyte quality and endometrial receptivity, since none are currently available.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 27%
Student > Master 8 20%
Researcher 7 17%
Student > Bachelor 2 5%
Student > Postgraduate 2 5%
Other 5 12%
Unknown 6 15%
Readers by discipline Count As %
Medicine and Dentistry 16 39%
Biochemistry, Genetics and Molecular Biology 5 12%
Nursing and Health Professions 3 7%
Arts and Humanities 2 5%
Social Sciences 2 5%
Other 5 12%
Unknown 8 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 March 2018.
All research outputs
#4,816,167
of 25,461,852 outputs
Outputs from Cochrane database of systematic reviews
#7,009
of 12,090 outputs
Outputs of similar age
#77,863
of 326,967 outputs
Outputs of similar age from Cochrane database of systematic reviews
#162
of 202 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,090 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.2. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,967 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 202 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.