↓ Skip to main content

Cochrane Database of Systematic Reviews

Interventions for recurrent corneal erosions

Overview of attention for article published in Cochrane database of systematic reviews, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)

Mentioned by

twitter
12 X users
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
186 Mendeley
Title
Interventions for recurrent corneal erosions
Published in
Cochrane database of systematic reviews, July 2018
DOI 10.1002/14651858.cd001861.pub4
Pubmed ID
Authors

Stephanie L Watson, Vannessa Leung

Abstract

Recurrent corneal erosion is a common cause of disabling ocular symptoms and predisposes the cornea to infection. It may follow corneal trauma. Measures to prevent the development of recurrent corneal erosion following corneal trauma have not been firmly established. Once recurrent corneal erosion develops, simple medical therapy (standard treatment) may lead to resolution of the episode. However, some people continue to suffer when such therapy fails and repeated episodes of erosion develop. A number of treatment and prophylactic options are then available but there is no agreement as to the best option. This review version is an update to the original version published in 2007 and a previous update published in 2012. To assess the effectiveness and adverse effects of regimens for the prophylaxis of further recurrent corneal erosion episodes, the treatment of recurrent corneal erosion and prophylaxis of the development of recurrent corneal erosion following trauma. We searched CENTRAL, which contains the Cochrane Eyes and Vision Trials Register; MEDLINE; Embase; LILACS; the ISRCTN registry; ClinicalTrials.gov and the ICTRP. The date of the search was 14 December 2017. We included randomised and quasi-randomised trials that compared a prophylactic or treatment regimen with another prophylaxis/treatment or no prophylaxis/treatment for people with recurrent corneal erosion. We used standard methods expected by Cochrane. Two authors independently screened search results, extracted data and assessed risk of bias in the included studies using the Cochrane tool for assessing risk of bias. We considered the following outcome measures: resolution of symptoms after treatment; recurrence after complete or partial resolution; symptoms (pain); adverse effects (corneal haze, astigmatism). We graded the certainty of the evidence using GRADE for the three most clinically relevant comparisons. We included eight randomised and two quasi-randomised controlled trials in the review, encompassing 505 participants. Seven studies were from Europe (Germany, Sweden and the UK), two from East Asia (Hong Kong and Japan) and one from Australia. Nine of the studies examined treatments for episodes of recurrent corneal erosions and one study considered prophylaxis to prevent development of recurrent corneal erosions after injury. Two of the nine treatment studies also enrolled participants in a study of prophylaxis to prevent further episodes of recurrent corneal erosions. The studies were poorly reported; we judged only one study low risk of bias on all domains.Two studies compared therapeutic contact lens with topical lubrication but one of these studies was published over 30 years ago and used a therapeutic contact lens that is no longer in common use. The more recent study was a two-centre UK study with 29 participants. It provided low-certainty evidence on resolution of symptoms after treatment with similar number of participants in both groups experiencing resolution of symptoms at four months (risk ratio (RR) 0.97, 95% confidence interval (CI) 0.62 to 1.53). There was very low-certainty evidence on recurrence after partial or total resolution at seven months' follow-up (RR 1.07, 95% CI 0.07 to 15.54). There was no evidence of an important difference in pain score (score of 3 in the contact lens group and score of 2 in the topical lubrication group, low-certainty evidence) and no adverse effects were reported. The older study, using a contact lens no longer in common use, found an increased risk of pain and complications with the contact lens compared with hypromellose drops and paraffin ointment at night.A single-centre, Australian study, with 33 participants, provided low-certainty evidence of an increased risk of recurrence with phototherapeutic keratectomy compared with alcohol delamination but with wide confidence intervals, compatible with increased or decreased risk (RR 1.27, 95% CI 0.48 to 3.37). Time to recurrence was similar in both groups (6.5 and 6 months, low-certainty evidence). On average people receiving phototherapeutic keratectomy reported less pain but confidence intervals included no difference or greater pain (mean difference (MD) -0.70, 95% CI -2.23 to 0.83, low-certainty evidence). No adverse effects were reported.A 48-participant study in Hong Kong found recurrences were less common in people given diamond burr superficial keratectomy after epithelial debridement compared with sham diamond burr treatment after epithelial debridement (RR 0.07, 95% CI 0.01 to 0.50, moderate-certainty evidence). The study did not report pain scores but adverse effects such as corneal haze (RR 0.92, 95% CI 0.06 to 13.87, low-certainty evidence) and astigmatism (0.88 versus 0.44 dioptres, moderate-certainty evidence) were similar between the groups.A study comparing transepithelial versus subepithelial excimer laser ablation in 100 people found low-certainty evidence of a small increased risk of recurrence of corneal erosion at one-year follow-up in people given the transepithelial compared with subepithelial technique, however, the confidence intervals were wide and compatible with increased or decreased risk (RR 1.20, 95% CI 0.58 to 2.48, low-certainty evidence). Other outcomes were not reported.Other treatment comparisons included in this review were only addressed by studies published two decades or more ago. The results of these studies were inconclusive: excimer laser ablation (after epithelial debridement) versus no excimer laser ablation (after epithelial debridement), epithelial debridement versus anterior stromal puncture, anterior stromal puncture versus therapeutic contact lens, oral oxytetracycline and topical prednisolone (in addition to 'standard therapy') versus oral oxytetracycline (in addition to 'standard therapy') versus 'standard therapy'. Well-designed, masked, randomised controlled trials using standardised methods are needed to establish the benefits of new and existing prophylactic and treatment regimes for recurrent corneal erosion. Studies included in this review have been of insufficient size and quality to provide firm evidence to inform the development of management guidelines. International consensus is also needed to progress research efforts towards evaluation of the major effective treatments for recurrent corneal erosions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 186 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 186 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 27 15%
Student > Master 18 10%
Other 15 8%
Researcher 14 8%
Student > Ph. D. Student 14 8%
Other 37 20%
Unknown 61 33%
Readers by discipline Count As %
Medicine and Dentistry 65 35%
Nursing and Health Professions 20 11%
Unspecified 6 3%
Pharmacology, Toxicology and Pharmaceutical Science 5 3%
Economics, Econometrics and Finance 4 2%
Other 20 11%
Unknown 66 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 April 2021.
All research outputs
#3,559,093
of 25,461,852 outputs
Outputs from Cochrane database of systematic reviews
#6,132
of 12,090 outputs
Outputs of similar age
#66,621
of 339,885 outputs
Outputs of similar age from Cochrane database of systematic reviews
#113
of 161 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,090 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.2. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,885 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 161 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.