↓ Skip to main content

Cochrane Database of Systematic Reviews

Anticoagulation for the initial treatment of venous thromboembolism in people with cancer

Overview of attention for article published in Cochrane database of systematic reviews, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
8 X users
facebook
2 Facebook pages
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
156 Mendeley
Title
Anticoagulation for the initial treatment of venous thromboembolism in people with cancer
Published in
Cochrane database of systematic reviews, January 2018
DOI 10.1002/14651858.cd006649.pub7
Pubmed ID
Authors

Maram B Hakoum, Lara A Kahale, Ibrahim G Tsolakian, Charbel F Matar, Victor ED Yosuico, Irene Terrenato, Francesca Sperati, Maddalena Barba, Holger Schünemann, Elie A Akl

Abstract

Compared with people without cancer, people with cancer who receive anticoagulant treatment for venous thromboembolism (VTE) are more likely to develop recurrent VTE. To compare the efficacy and safety of three types of parenteral anticoagulants (i.e. fixed-dose low molecular weight heparin (LMWH), adjusted-dose unfractionated heparin (UFH), and fondaparinux) for the initial treatment of VTE in people with cancer. A comprehensive search included a major electronic search of the following databases: Cochrane Central Register of Controlled Trials (CENTRAL) (2018, Issue 1), MEDLINE (via Ovid) and Embase (via Ovid); handsearching of conference proceedings; checking of references of included studies; use of the 'related citation' feature in PubMed; and a search for ongoing studies. This update of the systematic review was based on the findings of a literature search conducted on 14 January 2018. Randomized controlled trials (RCTs) assessing the benefits and harms of LMWH, UFH, and fondaparinux in people with cancer and objectively confirmed VTE. Using a standardized form, we extracted data in duplicate on study design, participants, interventions outcomes of interest, and risk of bias. Outcomes of interested included all-cause mortality, symptomatic VTE, major bleeding, minor bleeding, postphlebitic syndrome, quality of life, and thrombocytopenia. We assessed the certainty of evidence for each outcome using the GRADE approach. Of 15440 identified citations, 7387 unique citations, 15 RCTs fulfilled the eligibility criteria. These trials enrolled 1615 participants with cancer and VTE: 13 compared LMWH with UFH enrolling 1025 participants, one compared fondaparinux with UFH and LMWH enrolling 477 participants, and one compared dalteparin with tinzaparin enrolling 113 participants. The meta-analysis of mortality at three months included 418 participants from five studies and that of recurrent VTE included 422 participants from 3 studies. The findings showed that LMWH likely decreases mortality at three months compared to UFH (risk ratio (RR) 0.66, 95% confidence interval (CI) 0.40 to 1.10; risk difference (RD) 57 fewer per 1000, 95% CI 101 fewer to 17 more; moderate certainty evidence), but did not rule out a clinically significant increase or decrease in VTE recurrence (RR 0.69, 95% CI 0.27 to 1.76; RD 30 fewer per 1000, 95% CI 70 fewer to 73 more; moderate certainty evidence).The study comparing fondaparinux with heparin (UFH or LMWH) did not exclude a beneficial or detrimental effect of fondaparinux on mortality at three months (RR 1.25, 95% CI 0.86 to 1.81; RD 43 more per 1000, 95% CI 24 fewer to 139 more; moderate certainty evidence), recurrent VTE (RR 0.93, 95% CI 0.56 to 1.54; RD 8 fewer per 1000, 95% CI 52 fewer to 63 more; moderate certainty evidence), major bleeding (RR 0.82, 95% CI 0.40 to 1.66; RD 12 fewer per 1000, 95% CI 40 fewer to 44 more; moderate certainty evidence), or minor bleeding (RR 1.53, 95% CI 0.88 to 2.66; RD 42 more per 1000, 95% CI 10 fewer to 132 more; moderate certainty evidence)The study comparing dalteparin with tinzaparin did not exclude a beneficial or detrimental effect of dalteparin on mortality (RR 0.86, 95% CI 0.43 to 1.73; RD 33 fewer per 1000, 95% CI 135 fewer to 173 more; low certainty evidence), recurrent VTE (RR 0.44, 95% CI 0.09 to 2.16; RD 47 fewer per 1000, 95% CI 77 fewer to 98 more; low certainty evidence), major bleeding (RR 2.19, 95% CI 0.20 to 23.42; RD 20 more per 1000, 95% CI 14 fewer to 380 more; low certainty evidence), or minor bleeding (RR 0.82, 95% CI 0.30 to 2.21; RD 24 fewer per 1000, 95% CI 95 fewer to 164 more; low certainty evidence). LMWH is possibly superior to UFH in the initial treatment of VTE in people with cancer. Additional trials focusing on patient-important outcomes will further inform the questions addressed in this review. The decision for a person with cancer to start LMWH therapy should balance the benefits and harms and consider the person's values and preferences.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 156 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 156 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 19 12%
Researcher 18 12%
Other 13 8%
Student > Bachelor 13 8%
Student > Postgraduate 10 6%
Other 31 20%
Unknown 52 33%
Readers by discipline Count As %
Medicine and Dentistry 54 35%
Nursing and Health Professions 19 12%
Biochemistry, Genetics and Molecular Biology 4 3%
Pharmacology, Toxicology and Pharmaceutical Science 4 3%
Agricultural and Biological Sciences 2 1%
Other 13 8%
Unknown 60 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 April 2024.
All research outputs
#4,337,626
of 25,706,302 outputs
Outputs from Cochrane database of systematic reviews
#6,808
of 13,138 outputs
Outputs of similar age
#88,375
of 452,524 outputs
Outputs of similar age from Cochrane database of systematic reviews
#129
of 222 outputs
Altmetric has tracked 25,706,302 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,138 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.7. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 452,524 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 222 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.