↓ Skip to main content

Cochrane Database of Systematic Reviews

Urate oxidase for the prevention and treatment of tumour lysis syndrome in children with cancer

Overview of attention for article published in Cochrane database of systematic reviews, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
24 X users
wikipedia
5 Wikipedia pages

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
207 Mendeley
Title
Urate oxidase for the prevention and treatment of tumour lysis syndrome in children with cancer
Published in
Cochrane database of systematic reviews, March 2017
DOI 10.1002/14651858.cd006945.pub4
Pubmed ID
Authors

Daniel Kl Cheuk, Alan Ks Chiang, Godfrey Cf Chan, Shau Yin Ha

Abstract

Tumour lysis syndrome (TLS) is a serious complication of malignancies and can result in renal failure or death. Previous reviews did not find clear evidence of benefit of urate oxidase in children with cancer. This review is the second update of a previously published Cochrane review. To assess the effects and safety of urate oxidase for the prevention and treatment of TLS in children with malignancies. In March 2016 we searched CENTRAL, MEDLINE, Embase, and CINAHL. In addition, we searched the reference lists of all identified relevant papers, trials registers and other databases. We also screened conference proceedings and we contacted experts in the field and the manufacturer of rasburicase, Sanofi-aventis. Randomised controlled trials (RCT) and controlled clinical trials (CCT) of urate oxidase for the prevention or treatment of TLS in children under 18 years with any malignancy. Two review authors independently extracted trial data and assessed individual trial quality. We used risk ratios (RR) for dichotomous data and mean difference (MD) for continuous data. We included seven trials, involving 471 participants in the treatment groups and 603 participants in the control groups. No new studies were identified in the update. One RCT and five CCTs compared urate oxidase and allopurinol. Three trials tested Uricozyme, and three trials tested rasburicase for the prevention of TLS.The RCT did not evaluate the primary outcome (incidence of clinical TLS). It showed no clear evidence of a difference in mortality (both all-cause mortality (Fisher's exact test P = 0.23) and mortality due to TLS (no deaths in either group)), renal failure (Fisher's exact test P = 0.46), and adverse effects between the treatment and the control groups (Fisher's exact test P = 1.0). The frequency of normalisation of uric acid at four hours (10 out of 10 participants in the treatment group versus zero out of nine participants in the control group, Fisher's exact test P < 0.001) and area under the curve of uric acid at four days (MD -201.00 mg/dLhr, 95% CI -258.05 mg/dLhr to -143.95 mg/dLhr; P < 0.00001) were significantly better in the treatment group.One CCT evaluated the primary outcome; no clear evidence of a difference was identified between the treatment and the control groups (RR 0.77, 95% CI 0.44 to 1.33; P = 0.34). Pooled results of three CCTs showed significantly lower mortality due to TLS in the treatment group (RR 0.05, 95% CI 0.00 to 0.89; P = 0.04); no clear evidence of a difference in all-cause mortality was identified between the groups (RR 0.19, 95% CI 0.01 to 3.42; P = 0.26). Pooled results from five CCTs showed significantly lower incidence of renal failure in the treatment group (RR 0.26, 95% CI 0.08 to 0.89; P = 0.03). Results of CCTs also showed significantly lower uric acid in the treatment group at two days (three CCTs: MD -3.80 mg/dL, 95% CI -7.37 mg/dL to -0.24 mg/dL; P = 0.04), three days (two CCTs: MD -3.13 mg/dL, 95% CI -6.12 mg/dL to -0.14 mg/dL; P = 0.04), four days (two CCTs: MD -4.60 mg/dL, 95% CI -6.39 mg/dL to -2.81 mg/dL; P < 0.00001), and seven days (one CCT: MD -1.74 mg/dL, 95% CI -3.01 mg/dL to -0.47 mg/dL; P = 0.007) after therapy, but not one day (three CCTs: MD -3.00 mg/dL, 95% CI -7.61 mg/dL to 1.60 mg/dL; P = 0.2), five days (one CCT: MD -1.02 mg/dL, 95% CI -2.24 mg/dL to 0.20 mg/dL; P = 0.1), and 12 days (one CCT: MD -0.80 mg/dL, 95% CI -2.51 mg/dL to 0.91 mg/dL; P = 0.36) after therapy. Pooled results from three CCTs showed higher frequency of adverse effects in participants who received urate oxidase (RR 9.10, 95% CI 1.29 to 64.00; P = 0.03).Another included RCT, with 30 participants, compared different doses of rasburicase (0.2 mg/kg versus 0.15 mg/kg). The primary outcome was not evaluated. No clear evidence of a difference in mortality (all-cause mortality (Fisher's exact test P = 1.0) and mortality due to TLS (no deaths in both groups)) and renal failure (no renal failure in both groups) was identified. It demonstrated no clear evidence of a difference in uric acid normalisation (RR 1.07, 95% CI 0.89 to 1.28; P = 0.49) and uric acid level at four hours (MD 8.10%, 95% CI -0.99% to 17.19%; P = 0.08). Common adverse events of urate oxidase included hypersensitivity, haemolysis, and anaemia, but no clear evidence of a difference between treatment groups was identified (RR 0.54, 95% CI 0.12 to 2.48; P = 0.42).The quality of evidence ranks from very low to low because of imprecise results, and all included trials were highly susceptible to biases. Although urate oxidase might be effective in reducing serum uric acid, it is unclear whether it reduces clinical TLS, renal failure, or mortality. Adverse effects might be more common for urate oxidase compared with allopurinol. Clinicians should weigh the potential benefits of reducing uric acid and uncertain benefits of preventing mortality or renal failure from TLS against the potential risk of adverse effects.

X Demographics

X Demographics

The data shown below were collected from the profiles of 24 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 207 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 207 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 25 12%
Student > Ph. D. Student 22 11%
Student > Bachelor 22 11%
Other 18 9%
Student > Postgraduate 13 6%
Other 51 25%
Unknown 56 27%
Readers by discipline Count As %
Medicine and Dentistry 67 32%
Nursing and Health Professions 25 12%
Unspecified 13 6%
Psychology 10 5%
Biochemistry, Genetics and Molecular Biology 10 5%
Other 15 7%
Unknown 67 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 January 2022.
All research outputs
#2,130,543
of 25,481,734 outputs
Outputs from Cochrane database of systematic reviews
#4,512
of 13,137 outputs
Outputs of similar age
#39,709
of 321,388 outputs
Outputs of similar age from Cochrane database of systematic reviews
#110
of 286 outputs
Altmetric has tracked 25,481,734 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,137 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.7. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,388 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 286 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.