↓ Skip to main content

Cochrane Database of Systematic Reviews

Vaccines for preventing herpes zoster in older adults

Overview of attention for article published in Cochrane database of systematic reviews, October 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

blogs
1 blog
twitter
17 X users
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
22 Mendeley
Title
Vaccines for preventing herpes zoster in older adults
Published in
Cochrane database of systematic reviews, October 2023
DOI 10.1002/14651858.cd008858.pub5
Pubmed ID
Authors

Juliana de Oliveira Gomes, Anna Mz Gagliardi, Brenda Ng Andriolo, Maria Regina Torloni, Regis B Andriolo, Maria Eduarda Dos Santos Puga, Eduardo Canteiro Cruz

Abstract

Herpes zoster, commonly known as shingles, is a neurocutaneous disease caused by the reactivation of the virus that causes varicella (chickenpox). After resolution of the varicella episode, the virus can remain latent in the sensitive dorsal ganglia of the spine. Years later, with declining immunity, the varicella zoster virus (VZV) can reactivate and cause herpes zoster, an extremely painful condition that can last many weeks or months and significantly compromise the quality of life of the affected person. The natural process of ageing is associated with a reduction in cellular immunity, and this predisposes older adults to herpes zoster. Vaccination with an attenuated form of the VZV activates specific T-cell production avoiding viral reactivation. Two types of herpes zoster vaccines are currently available. One of them is the single-dose live attenuated zoster vaccine (LZV), which contains the same live attenuated virus used in the chickenpox vaccine, but it has over 14-fold more plaque-forming units of the attenuated virus per dose. The other is the recombinant zoster vaccine (RZV) which does not contain the live attenuated virus, but rather a small fraction of the virus that cannot replicate but can boost immunogenicity. The recommended schedule for the RZV is two doses two months apart. This is an update of a Cochrane Review first published in 2010, and updated in 2012, 2016, and 2019. To evaluate the effectiveness and safety of vaccination for preventing herpes zoster in older adults. For this 2022 update, we searched the Cochrane Central Register of Controlled Trials (CENTRAL 2022, Issue 10), MEDLINE (1948 to October 2022), Embase (2010 to October 2022), CINAHL (1981 to October 2022), LILACS (1982 to October 2022), and three trial registries. We included studies involving healthy older adults (mean age 60 years or older). We included randomised controlled trials (RCTs) or quasi-RCTs comparing zoster vaccine (any dose and potency) versus any other type of intervention (e.g. varicella vaccine, antiviral medication), placebo, or no intervention (no vaccine). Outcomes were cumulative incidence of herpes zoster, adverse events (death, serious adverse events, systemic reactions, or local reaction occurring at any time after vaccination), and dropouts. We used the standard methodological procedures expected by Cochrane. We included two new studies involving 1736 participants in this update. The review now includes a total of 26 studies involving 90,259 healthy older adults with a mean age of 63.7 years. Only three studies assessed the cumulative incidence of herpes zoster in groups that received vaccines versus placebo. Most studies were conducted in high-income countries in Europe and North America and included healthy Caucasians (understood to be white participants) aged 60 years or over with no immunosuppressive comorbidities. Two studies were conducted in Japan and one study was conducted in the Republic of Korea. Sixteen studies used LZV. Ten studies tested an RZV. The overall certainty of the evidence was moderate, which indicates that the intervention probably works. Most data for the primary outcome (cumulative incidence of herpes zoster) and secondary outcomes (adverse events and dropouts) came from studies that had a low risk of bias and included a large number of participants. The cumulative incidence of herpes zoster at up to three years of follow-up was lower in participants who received the LZV (one dose subcutaneously) than in those who received placebo (risk ratio (RR) 0.49, 95% confidence interval (CI) 0.43 to 0.56; risk difference (RD) 2%; number needed to treat for an additional beneficial outcome (NNTB) 50; moderate-certainty evidence) in the largest study, which included 38,546 participants. There were no differences between the vaccinated and placebo groups for serious adverse events (RR 1.08, 95% CI 0.95 to 1.21) or deaths (RR 1.01, 95% CI 0.92 to 1.11; moderate-certainty evidence). The vaccinated group had a higher cumulative incidence of one or more adverse events (RR 1.71, 95% CI 1.38 to 2.11; RD 23%; number needed to treat for an additional harmful outcome (NNTH) 4.3) and injection site adverse events (RR 3.73, 95% CI 1.93 to 7.21; RD 28%; NNTH 3.6; moderate-certainty evidence) of mild to moderate intensity. These data came from four studies with 6980 participants aged 60 years or older. Two studies (29,311 participants for safety evaluation and 22,022 participants for efficacy evaluation) compared RZV (two doses intramuscularly, two months apart) versus placebo. Participants who received the new vaccine had a lower cumulative incidence of herpes zoster at 3.2 years follow-up (RR 0.08, 95% CI 0.03 to 0.23; RD 3%; NNTB 33; moderate-certainty evidence), probably indicating a favourable profile of the intervention. There were no differences between the vaccinated and placebo groups in cumulative incidence of serious adverse events (RR 0.97, 95% CI 0.91 to 1.03) or deaths (RR 0.94, 95% CI 0.84 to 1.04; moderate-certainty evidence). The vaccinated group had a higher cumulative incidence of adverse events, any systemic symptom (RR 2.23, 95% CI 2.12 to 2.34; RD 33%; NNTH 3.0), and any local symptom (RR 6.89, 95% CI 6.37 to 7.45; RD 67%; NNTH 1.5). Although most participants reported that their symptoms were of mild to moderate intensity, the risk of dropouts (participants not returning for the second dose, two months after the first dose) was higher in the vaccine group than in the placebo group (RR 1.25, 95% CI 1.13 to 1.39; RD 1%; NNTH 100, moderate-certainty evidence). Only one study reported funding from a non-commercial source (a university research foundation). All other included studies received funding from pharmaceutical companies. We did not conduct subgroup and sensitivity analyses AUTHORS' CONCLUSIONS: LZV (single dose) and RZV (two doses) are probably effective in preventing shingles disease for at least three years. To date, there are no data to recommend revaccination after receiving the basic schedule for each type of vaccine. Both vaccines produce systemic and injection site adverse events of mild to moderate intensity. The conclusions did not change in relation to the previous version of the systematic review.

X Demographics

X Demographics

The data shown below were collected from the profiles of 17 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Other 4 18%
Student > Master 3 14%
Student > Doctoral Student 2 9%
Researcher 2 9%
Student > Postgraduate 2 9%
Other 2 9%
Unknown 7 32%
Readers by discipline Count As %
Medicine and Dentistry 9 41%
Biochemistry, Genetics and Molecular Biology 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Unknown 11 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 20. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 February 2024.
All research outputs
#1,851,068
of 25,604,262 outputs
Outputs from Cochrane database of systematic reviews
#3,964
of 13,148 outputs
Outputs of similar age
#31,172
of 358,427 outputs
Outputs of similar age from Cochrane database of systematic reviews
#27
of 109 outputs
Altmetric has tracked 25,604,262 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,148 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.7. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 358,427 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 109 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.