↓ Skip to main content

Cochrane Database of Systematic Reviews

Beta‐blockers for preventing aortic dissection in Marfan syndrome

Overview of attention for article published in Cochrane database of systematic reviews, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (72nd percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
304 Mendeley
Title
Beta‐blockers for preventing aortic dissection in Marfan syndrome
Published in
Cochrane database of systematic reviews, November 2017
DOI 10.1002/14651858.cd011103.pub2
Pubmed ID
Authors

Hyun‐Kyoung Koo, Kendra AK Lawrence, Vijaya M Musini

Abstract

Marfan syndrome is a hereditary disorder affecting the connective tissue and is caused by a mutation of the fibrillin-1 (FBN1) gene. It affects multiple systems of the body, most notably the cardiovascular, ocular, skeletal, dural and pulmonary systems. Aortic root dilatation is the most frequent cardiovascular manifestation and its complications, including aortic regurgitation, dissection and rupture are the main cause of morbidity and mortality. To assess the long-term efficacy and safety of beta-blocker therapy as compared to placebo, no treatment or surveillance only in people with Marfan syndrome. We searched the following databases on 28 June 2017; CENTRAL, MEDLINE, Embase, Science Citation Index Expanded and the Conference Proceeding Citation Index - Science in the Web of Science Core Collection. We also searched the Online Metabolic and Molecular Bases of Inherited Disease (OMMBID), ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) on 30 June 2017. We did not impose any restriction on language of publication. All randomised controlled trials (RCTs) of at least one year in duration assessing the effects of beta-blocker monotherapy compared with placebo, no treatment or surveillance only, in people of all ages with a confirmed diagnosis of Marfan syndrome were eligible for inclusion. Two review authors independently screened titles and abstracts for inclusion, extracted data and assessed trial quality. Trial authors were contacted to obtain missing data. Dichotomous outcomes will be reported as relative risk and continuous outcomes as mean differences with 95% confidence intervals. We assessed the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. One open-label, randomised, single-centre trial including 70 participants with Marfan syndrome (aged 12 to 50 years old) met the inclusion criteria. Participants were randomly assigned to propranolol (N = 32) or no treatment (N = 38) for an average duration of 9.3 years in the control group and 10.7 years in the treatment group. The initial dose of propranolol was 10 mg four times daily and the optimal dose was reached when the heart rate remained below 100 beats per minute during exercise or the systolic time interval increased by 30%. The mean (± standard error (SE)) optimal dose of propranolol was 212 ± 68 mg given in four divided doses daily.Beta-blocker therapy did not reduce the incidence of all-cause mortality (RR 0.24, 95% CI 0.01 to 4.75; participants = 70; low-quality evidence). Mortality attributed to Marfan syndrome was not reported. Non-fatal serious adverse events were also not reported. However, study authors report on pre-defined, non-fatal clinical endpoints, which include aortic dissection, aortic regurgitation, cardiovascular surgery and congestive heart failure. Their analysis showed no difference between the treatment and control groups in these outcomes (RR 0.79, 95% CI 0.37 to 1.69; participants = 70; low-quality evidence).Beta-blocker therapy did not reduce the incidence of aortic dissection (RR 0.59, 95% CI 0.12 to 3.03), aortic regurgitation (RR 1.19, 95% CI 0.18 to 7.96), congestive heart failure (RR 1.19, 95% CI 0.18 to 7.96) or cardiovascular surgery, (RR 0.59, 95% CI 0.12 to 3.03); participants = 70; low-quality evidence.The study reports a reduced rate of aortic dilatation measured by M-mode echocardiography in the treatment group (aortic ratio mean slope: 0.084 (control) vs 0.023 (treatment), P < 0.001). The change in systolic and diastolic blood pressure, total adverse events and withdrawal due to adverse events were not reported in the treatment or control group at study end point.We judged this study to be at high risk of selection (allocation concealment) bias, performance bias, detection bias, attrition bias and selective reporting bias. The overall quality of evidence was low. We do not know whether a statistically significant reduced rate of aortic dilatation translates into clinical benefit in terms of aortic dissection or mortality. Based on only one, low-quality RCT comparing long-term propranolol to no treatment in people with Marfan syndrome, we could draw no definitive conclusions for clinical practice. High-quality, randomised trials are needed to evaluate the long-term efficacy of beta-blocker treatment in people with Marfan syndrome. Future trials should report on all clinically relevant end points and adverse events to evaluate benefit versus harm of therapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 304 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 304 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 45 15%
Student > Master 34 11%
Student > Ph. D. Student 19 6%
Unspecified 16 5%
Researcher 14 5%
Other 59 19%
Unknown 117 38%
Readers by discipline Count As %
Medicine and Dentistry 73 24%
Nursing and Health Professions 30 10%
Unspecified 16 5%
Psychology 11 4%
Pharmacology, Toxicology and Pharmaceutical Science 10 3%
Other 36 12%
Unknown 128 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 October 2023.
All research outputs
#6,303,951
of 25,461,852 outputs
Outputs from Cochrane database of systematic reviews
#7,687
of 12,090 outputs
Outputs of similar age
#95,028
of 343,186 outputs
Outputs of similar age from Cochrane database of systematic reviews
#160
of 197 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,090 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.2. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,186 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 197 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.