↓ Skip to main content

Cochrane Database of Systematic Reviews

Videolaryngoscopy versus direct laryngoscopy for adult patients requiring tracheal intubation

Overview of attention for article published in Cochrane database of systematic reviews, November 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

blogs
4 blogs
twitter
109 X users
facebook
5 Facebook pages
f1000
1 research highlight platform

Citations

dimensions_citation
323 Dimensions

Readers on

mendeley
437 Mendeley
Title
Videolaryngoscopy versus direct laryngoscopy for adult patients requiring tracheal intubation
Published in
Cochrane database of systematic reviews, November 2016
DOI 10.1002/14651858.cd011136.pub2
Pubmed ID
Authors

Sharon R Lewis, Andrew R Butler, Joshua Parker, Tim M Cook, Andrew F Smith

Abstract

Successful tracheal intubation during general anaesthesia traditionally requires a line of sight to the larynx attained by positioning the head and neck and using a laryngoscope to retract the tongue and soft tissues of the floor of the mouth. Difficulties with intubation commonly arise, and alternative laryngoscopes that use digital and/or fibreoptic technology have been designed to improve visibility when airway difficulty is predicted or encountered. Among these devices, a rigid videolaryngoscope (VLS) uses a blade to retract the soft tissues and transmits a lighted video image to a screen. Our primary objective was to assess whether use of videolaryngoscopy for tracheal intubation in adults requiring general anaesthesia reduces risks of complications and failure compared with direct laryngoscopy. Our secondary aim was to assess the benefits and risks of these devices in selected population groups, such as adults with obesity and those with a known or predicted difficult airway. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and Embase on 10 February 2015. Our search terms were relevant to the review question and were not limited by outcomes. We carried out clinical trials register searches and forward and backward citation tracking. We reran the search on 12 January 2016; we added potential new studies of interest from the 2016 search to a list of 'Studies awaiting classification', and we will incorporate these studies into the formal review during the review update. We considered all randomized controlled trials and quasi-randomized studies with adult patients undergoing laryngoscopy performed with a VLS or a Macintosh laryngoscope in a clinical, emergency or out-of-hospital setting. We included parallel and cross-over study designs. Two review authors independently assessed trial quality and extracted data, consulting a third review author to resolve disagreements. We used standard Cochrane methodological procedures, including assessment of risk of bias. We included 64 studies identified during the 2015 search that enrolled 7044 adult participants and compared a VLS of one or more designs with a Macintosh laryngoscope. We identified 38 studies awaiting classification and seven ongoing studies. Of the 64 included studies, 61 included elective surgical patients, and three were conducted in an emergency setting. Among 48 studies that included participants without a predicted difficult airway, 15 used techniques to simulate a difficult airway. Seven recruited participants with a known or predicted difficult airway, and the remaining studies did not specify or included both predicted and not predicted difficult airways. Only two studies specifically recruited obese participants. It was not possible to blind the intubator to the device, and we noted a high level of inevitable heterogeneity, given the large number of studies.Statistically significantly fewer failed intubations were reported when a VLS was used (Mantel-Haenszel (M-H) odds ratio (OR), random-effects 0.35, 95% confidence Interval (CI) 0.19 to 0.65; 38 studies; 4127 participants), and fewer failed intubations occurred when a VLS was used in participants with an anticipated difficult airway (M-H OR, random-effects 0.28, 95% CI 0.15 to 0.55; six studies; 830 participants). We graded the quality of this evidence as moderate on the basis of the GRADE system. Failed intubations were fewer when a VLS was used in participants with a simulated difficult airway (M-H OR, random-effects 0.18, 95% CI 0.04 to 0.77; nine studies; 810 participants), but groups with no predicted difficult airway provided no significant results (M-H OR, random-effects 0.61, 95% CI 0.22 to 1.67; 19 studies; 1743 participants).Eight studies reported on hypoxia, and only three of these described any events; results showed no differences between devices for this outcome (M-H OR, random-effects 0.39, 95% CI 0.10 to 1.44; 1319 participants). Similarly, few studies reported on mortality, noting no differences between devices (M-H OR, fixed-effect 1.09, 95% CI 0.65 to 1.82; two studies; 663 participants), and only one study reporting on the occurrence of respiratory complications (78 participants); we graded these three outcomes as very low quality owing to lack of data. We found no statistically significant differences between devices in the proportion of successful first attempts (M-H OR, random-effects 1.27, 95% CI 0.77 to 2.09; 36 studies; 4731 participants) nor in those needing more than one attempt. We graded the quality of this evidence as moderate. Studies reported no statistically significant differences in the incidence of sore throat in the postanaesthesia care unit (PACU) (M-H OR, random-effects 1.00 (95% CI 0.73 to 1.38); 10 studies; 1548 participants) nor at 24 hours postoperatively (M-H OR random-effects 0.54, 95% CI 0.27 to 1.07; eight studies; 844 participants); we graded the quality of this evidence as moderate. Data combined to include studies of cross-over design revealed statistically significantly fewer laryngeal or airway traumas (M-H OR, random-effects 0.68, 95% CI 0.48 to 0.96; 29 studies; 3110 participants) and fewer incidences of postoperative hoarseness (M-H OR, fixed-effect 0.57, 95% CI 0.36 to 0.88; six studies; 527 participants) when a VLS was used. A greater number of laryngoscopies performed with a VLS achieved a view of most of the glottis (M-H OR, random-effects 6.77, 95% CI 4.17 to 10.98; 22 studies; 2240 participants), fewer laryngoscopies performed with a VLS achieved no view of the glottis (M-H OR, random-effects 0.18, 95% CI 0.13 to 0.27; 22 studies; 2240 participants) and the VLS was easier to use (M-H OR, random-effects 7.13, 95% CI 3.12 to 16.31; seven studies; 568 participants).Although a large number of studies reported time required for tracheal intubation (55 studies; 6249 participants), we did not present an effects estimate for this outcome owing to the extremely high level of statistical heterogeneity (I(2) = 96%). Videolaryngoscopes may reduce the number of failed intubations, particularly among patients presenting with a difficult airway. They improve the glottic view and may reduce laryngeal/airway trauma. Currently, no evidence indicates that use of a VLS reduces the number of intubation attempts or the incidence of hypoxia or respiratory complications, and no evidence indicates that use of a VLS affects time required for intubation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 109 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 437 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 <1%
Austria 1 <1%
Unknown 434 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 52 12%
Student > Master 47 11%
Other 44 10%
Student > Bachelor 40 9%
Student > Postgraduate 28 6%
Other 86 20%
Unknown 140 32%
Readers by discipline Count As %
Medicine and Dentistry 190 43%
Nursing and Health Professions 33 8%
Biochemistry, Genetics and Molecular Biology 11 3%
Psychology 7 2%
Social Sciences 7 2%
Other 31 7%
Unknown 158 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 89. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 October 2023.
All research outputs
#483,313
of 25,564,614 outputs
Outputs from Cochrane database of systematic reviews
#852
of 13,156 outputs
Outputs of similar age
#9,005
of 312,464 outputs
Outputs of similar age from Cochrane database of systematic reviews
#16
of 255 outputs
Altmetric has tracked 25,564,614 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,156 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.8. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,464 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 255 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.