↓ Skip to main content

Endothelial microparticles are increased in congenital heart diseases and contribute to endothelial dysfunction

Overview of attention for article published in Journal of Translational Medicine, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Endothelial microparticles are increased in congenital heart diseases and contribute to endothelial dysfunction
Published in
Journal of Translational Medicine, January 2017
DOI 10.1186/s12967-016-1087-2
Pubmed ID
Authors

Ze-Bang Lin, Hong-Bo Ci, Yan Li, Tian-Pu Cheng, Dong-Hong Liu, Yan-Sheng Wang, Jun Xu, Hao-Xiang Yuan, Hua-Ming Li, Jing Chen, Li Zhou, Zhi-Ping Wang, Xi Zhang, Zhi-Jun Ou, Jing-Song Ou

Abstract

We previously demonstrated that endothelial microparticles (EMPs) are increased in mitral valve diseases and impair valvular endothelial cell function. Perioperative systemic inflammation is an important risk factor and complication of cardiac surgery. In this study, we investigate whether EMPs increase in congenital heart diseases to promote inflammation and endothelial dysfunction. The level of plasma EMPs in 20 patients with atrial septal defect (ASD), 23 patients with ventricular septal defect (VSD), and 30 healthy subjects were analyzed by flow cytometry. EMPs generated from human umbilical vascular endothelial cells (HUVECs) were injected into C57BL6 mice, or cultured with HUVECs without or with siRNAs targeting P38 MAPK. The expression and/or phosphorylation of endothelial nitric oxide synthase (eNOS), P38 MAPK, and caveolin-1 in mouse heart and/or in cultured HUVECs were determined. We evaluated generation of nitric oxide (NO) in mouse hearts, and levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cultured HUVECs and in mice. EMPs were significantly elevated in patients with ASD and VSD, especially in those with pulmonary hypertension when compared with controls. EMPs increased caveolin-1 expression and P38 MAPK phosphorylation and decreased eNOS phosphorylation and NO production in mouse hearts. EMPs stimulated P38 MAPK expression, TNF-α and IL-6 production, which were all inhibited by siRNAs targeting P38 MAPK in cultured HUVECs. EMPs were increased in adult patients with congenital heart diseases and may contribute to increased inflammation leading to endothelial dysfunction via P38 MAPK-dependent pathways. This novel data provides a potential therapeutic target to address important complications of surgery of congenial heart disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 57 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 12%
Student > Master 7 12%
Student > Bachelor 5 9%
Student > Doctoral Student 3 5%
Other 2 4%
Other 10 18%
Unknown 23 40%
Readers by discipline Count As %
Medicine and Dentistry 17 30%
Biochemistry, Genetics and Molecular Biology 5 9%
Psychology 2 4%
Agricultural and Biological Sciences 2 4%
Neuroscience 2 4%
Other 6 11%
Unknown 23 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 October 2017.
All research outputs
#14,893,675
of 22,925,760 outputs
Outputs from Journal of Translational Medicine
#1,985
of 4,010 outputs
Outputs of similar age
#242,858
of 421,125 outputs
Outputs of similar age from Journal of Translational Medicine
#33
of 63 outputs
Altmetric has tracked 22,925,760 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,010 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,125 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.