↓ Skip to main content

Temporal Changes in Soil Bacterial Diversity and Humic Substances Degradation in Subarctic Tundra Soil

Overview of attention for article published in Microbial Ecology, October 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Temporal Changes in Soil Bacterial Diversity and Humic Substances Degradation in Subarctic Tundra Soil
Published in
Microbial Ecology, October 2014
DOI 10.1007/s00248-014-0499-x
Pubmed ID
Authors

Ha Ju Park, Namyi Chae, Woo Jun Sul, Bang Yong Lee, Yoo Kyung Lee, Dockyu Kim

Abstract

Humic substances (HS), primarily humic acids (HA) and fulvic acids (FA), are the largest constituent of soil organic matter. In microcosm systems with subarctic HS-rich tundra soil (site AK 1-75; approximately 5.6 °C during the thawing period) from Council, Alaska, the HA content significantly decreased to 48 % after a 99-day incubation at 5 °C as part of a biologically mediated process. Accordingly, levels of FA, a putative byproduct of HA degradation, consistently increased to 172 % during an identical incubation process. Culture-independent microbial community analysis showed that during the microcosm experiments, the relative abundance of phyla Proteobacteria (bacteria) and Euryarchaeota (archaea) largely increased, indicating their involvement in HS degradation. When the indigenous bacteria in AK 1-75 were enriched in an artificial mineral medium spiked with HA, the changes in relative abundance were most conspicuous in Proteobacteria (from 60.2 to 79.0 %), specifically Betaproteobacteria-related bacteria. One hundred twenty-two HA-degrading bacterial strains, primarily from the genera Paenibacillus (phylum Firmicutes) and Pseudomonas (class Gammaproteobacteria), were cultivated from AK 1-75 and nearby sites. Through culture-dependent analysis with these bacterial isolates, we observed increasing HS-degradation rates in parallel with rising temperatures in a range of 0 °C to 20 °C, with the most notable increase occurring at 8 °C compared to 6 °C. Our results indicate that, although microbial-mediated HS degradation occurs at temperature as low as 5 °C in tundra ecosystems, increasing soil temperature caused by global climate change could enhance HS degradation rates. Extending the thawing period could also increase degradation activity, thereby directly affecting nearby microbial communities and rhizosphere environments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 2 4%
Mexico 1 2%
Unknown 45 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 21%
Student > Ph. D. Student 8 17%
Student > Bachelor 6 13%
Student > Master 5 10%
Student > Doctoral Student 3 6%
Other 7 15%
Unknown 9 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 35%
Environmental Science 7 15%
Biochemistry, Genetics and Molecular Biology 3 6%
Engineering 3 6%
Arts and Humanities 1 2%
Other 5 10%
Unknown 12 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 June 2016.
All research outputs
#13,866,700
of 23,498,099 outputs
Outputs from Microbial Ecology
#1,234
of 2,092 outputs
Outputs of similar age
#123,293
of 255,304 outputs
Outputs of similar age from Microbial Ecology
#19
of 43 outputs
Altmetric has tracked 23,498,099 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,092 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 255,304 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.