↓ Skip to main content

Increasing Signal-to-Noise Ratio in Gas Chromatography - Electroantennography Using a Deans Switch Effluent Chopper

Overview of attention for article published in Journal of Chemical Ecology, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Increasing Signal-to-Noise Ratio in Gas Chromatography - Electroantennography Using a Deans Switch Effluent Chopper
Published in
Journal of Chemical Ecology, January 2018
DOI 10.1007/s10886-017-0916-y
Pubmed ID
Authors

Andrew J. Myrick, Thomas C. Baker

Abstract

Gas-chromatography-electroantennographic detection (GC-EAD) is a technique used in the identification of volatile organic compounds (VOCs), such as pheromones and plant host odors, which are physiologically relevant to insects. Although pheromones often elicit large EAD responses, other behaviorally relevant odors may elicit responses that are difficult to discern from noise. Lock-in amplification has long been used to reduce noise in a wide range of applications. Its utility when incorporated with GC-EAD was demonstrated previosuly by chopping (or pulsing) effluent-laden air that flowed over an insect antenna. This method had the disadvantage that it stimulated noise-inducing mechanoreceptors and, in some cases, disturbed the electrochemical interfaces in a preparation, limiting its performance. Here, the chopping function necessary for lock-in amplification was implemented directly on the GC effluent using a simple Deans switch. The technique was applied to excised antennae from female Heliothis virescens responding to phenethyl alcohol, a common VOC emitted by plants. Phenethyl alcohol was always visible and quantifiable on the flame ionization detector (FID) chromatogram, allowing the timing and amount of stimulus delivered to the antennal preparation to be measured. In our new chopper EAG configuration, the antennal preparation was shielded from air currents in the room, further reducing noise. A dose-response model in combination with a Markov-chain monte-carlo (MCMC) method for Bayesian inference was used to estimate and compare performance in terms of error rates involved in the detection of insect responses to GC peaks visible on an FID detector. Our experiments showed that the predicted single-trial phenethyl alcohol detection limit on female H. virescens antennae (at a 5.0% expected error rate) was 140,330 pg using traditional EAG recording methods, compared to 2.6-6.3 pg (5th to the 95th percentile) using Deans switch-enabled lock-in amplification, corresponding to a 10.4-12.7 dB increase in signal-to-noise ratio.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 23%
Student > Ph. D. Student 5 19%
Professor 3 12%
Student > Postgraduate 3 12%
Student > Master 3 12%
Other 4 15%
Unknown 2 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 27%
Chemistry 5 19%
Environmental Science 2 8%
Unspecified 1 4%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 7 27%
Unknown 3 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 May 2018.
All research outputs
#14,088,972
of 23,016,919 outputs
Outputs from Journal of Chemical Ecology
#1,525
of 2,055 outputs
Outputs of similar age
#232,985
of 442,080 outputs
Outputs of similar age from Journal of Chemical Ecology
#4
of 17 outputs
Altmetric has tracked 23,016,919 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,055 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,080 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.