↓ Skip to main content

Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes

Overview of attention for article published in Theoretical and Applied Genetics, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

twitter
37 X users
facebook
1 Facebook page

Readers on

mendeley
132 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes
Published in
Theoretical and Applied Genetics, March 2018
DOI 10.1007/s00122-018-3086-6
Pubmed ID
Authors

Philomin Juliana, Ravi P. Singh, Pawan K. Singh, Jesse A. Poland, Gary C. Bergstrom, Julio Huerta-Espino, Sridhar Bhavani, Jose Crossa, Mark E. Sorrells

Abstract

Genome-wide association mapping in conjunction with population sequencing map and Ensembl plants was used to identify markers/candidate genes linked to leaf rust, stripe rust and tan spot resistance in wheat. Leaf rust (LR), stripe rust (YR) and tan spot (TS) are some of the important foliar diseases in wheat (Triticum aestivum L.). To identify candidate resistance genes for these diseases in CIMMYT's (International Maize and Wheat Improvement Center) International bread wheat screening nurseries, we used genome-wide association studies (GWAS) in conjunction with information from the population sequencing map and Ensembl plants. Wheat entries were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. Using a mixed linear model, we observed that seedling resistance to LR was associated with 12 markers on chromosomes 1DS, 2AS, 2BL, 3B, 4AL, 6AS and 6AL, and seedling resistance to TS was associated with 14 markers on chromosomes 1AS, 2AL, 2BL, 3AS, 3AL, 3B, 6AS and 6AL. Seedling and adult plant resistance (APR) to YR were associated with several markers at the distal end of chromosome 2AS. In addition, YR APR was also associated with markers on chromosomes 2DL, 3B and 7DS. The potential candidate genes for these diseases included several resistance genes, receptor-like serine/threonine-protein kinases and defense-related enzymes. However, extensive LD in wheat that decays at about 5 × 107 bps, poses a huge challenge for delineating candidate gene intervals and candidates should be further mapped, functionally characterized and validated. We also explored a segment on chromosome 2AS associated with multiple disease resistance and identified seventeen disease resistance linked genes. We conclude that identifying candidate genes linked to significant markers in GWAS is feasible in wheat, thus creating opportunities for accelerating molecular breeding.

X Demographics

X Demographics

The data shown below were collected from the profiles of 37 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 132 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 132 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 20%
Researcher 19 14%
Student > Master 15 11%
Student > Doctoral Student 10 8%
Other 8 6%
Other 21 16%
Unknown 33 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 83 63%
Biochemistry, Genetics and Molecular Biology 3 2%
Computer Science 2 2%
Unspecified 1 <1%
Environmental Science 1 <1%
Other 4 3%
Unknown 38 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 25. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 July 2018.
All research outputs
#1,511,154
of 25,311,095 outputs
Outputs from Theoretical and Applied Genetics
#64
of 3,756 outputs
Outputs of similar age
#32,367
of 336,208 outputs
Outputs of similar age from Theoretical and Applied Genetics
#2
of 39 outputs
Altmetric has tracked 25,311,095 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,756 research outputs from this source. They receive a mean Attention Score of 5.0. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,208 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.