↓ Skip to main content

Evaluation of different gridded rainfall datasets for rainfed wheat yield prediction in an arid environment

Overview of attention for article published in International Journal of Biometeorology, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evaluation of different gridded rainfall datasets for rainfed wheat yield prediction in an arid environment
Published in
International Journal of Biometeorology, May 2018
DOI 10.1007/s00484-018-1555-x
Pubmed ID
Authors

A. Lashkari, N. Salehnia, S. Asadi, P. Paymard, H. Zare, M. Bannayan

Abstract

The accuracy of daily output of satellite and reanalysis data is quite crucial for crop yield prediction. This study has evaluated the performance of APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation), PERSIANN (Rainfall Estimation from Remotely Sensed Information using Artificial Neural Networks), TRMM (Tropical Rainfall Measuring Mission), and AgMERRA (The Modern-Era Retrospective Analysis for Research and Applications) precipitation products to apply as input data for CSM-CERES-Wheat crop growth simulation model to predict rainfed wheat yield. Daily precipitation output from various sources for 7 years (2000-2007) was obtained and compared with corresponding ground-observed precipitation data for 16 ground stations across the northeast of Iran. Comparisons of ground-observed daily precipitation with corresponding data recorded by different sources of datasets showed a root mean square error (RMSE) of less than 3.5 for all data. AgMERRA and APHRODITE showed the highest correlation (0.68 and 0.87) and index of agreement (d) values (0.79 and 0.89) with ground-observed data. When daily precipitation data were aggregated over periods of 10 days, the RMSE values, r, and d values increased (30, 0.8, and 0.7) for AgMERRA, APHRODITE, PERSIANN, and TRMM precipitation data sources. The simulations of rainfed wheat leaf area index (LAI) and dry matter using various precipitation data, coupled with solar radiation and temperature data from observed ones, illustrated typical LAI and dry matter shape across all stations. The average values of LAImax were 0.78, 0.77, 0.74, 0.70, and 0.69 using PERSIANN, AgMERRA, ground-observed precipitation data, APHRODITE, and TRMM. Rainfed wheat grain yield simulated by using AgMERRA and APHRODITE daily precipitation data was highly correlated (r2 ≥ 70) with those simulated using observed precipitation data. Therefore, gridded data have high potential to be used to supply lack of data and gaps in ground-observed precipitation data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 20%
Student > Ph. D. Student 6 15%
Student > Master 4 10%
Lecturer 3 8%
Student > Bachelor 3 8%
Other 6 15%
Unknown 10 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 23%
Environmental Science 7 18%
Engineering 5 13%
Earth and Planetary Sciences 5 13%
Economics, Econometrics and Finance 1 3%
Other 2 5%
Unknown 11 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 May 2018.
All research outputs
#14,107,269
of 23,047,237 outputs
Outputs from International Journal of Biometeorology
#935
of 1,300 outputs
Outputs of similar age
#179,279
of 327,709 outputs
Outputs of similar age from International Journal of Biometeorology
#26
of 30 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,300 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.1. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,709 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.