↓ Skip to main content

De novo variants in GREB1L are associated with non-syndromic inner ear malformations and deafness

Overview of attention for article published in Human Genetics, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
De novo variants in GREB1L are associated with non-syndromic inner ear malformations and deafness
Published in
Human Genetics, June 2018
DOI 10.1007/s00439-018-1898-8
Pubmed ID
Authors

Isabelle Schrauwen, Elina Kari, Jacob Mattox, Lorida Llaci, Joanna Smeeton, Marcus Naymik, David W. Raible, James A. Knowles, J. Gage Crump, Matthew J. Huentelman, Rick A. Friedman

Abstract

Congenital inner ear malformations affecting both the osseous and membranous labyrinth can have a devastating impact on hearing and language development. With the exception of an enlarged vestibular aqueduct, non-syndromic inner ear malformations are rare, and their underlying molecular biology has thus far remained understudied. To identify molecular factors that might be important in the developing inner ear, we adopted a family-based trio exome sequencing approach in young unrelated subjects with severe inner ear malformations. We identified two previously unreported de novo loss-of-function variants in GREB1L [c.4368G>T;p.(Glu1410fs) and c.982C>T;p.(Arg328*)] in two affected subjects with absent cochleae and eighth cranial nerve malformations. The cochlear aplasia in these affected subjects suggests that a developmental arrest or problem at a very early stage of inner ear development exists, e.g., during the otic pit formation. Craniofacial Greb1l RNA expression peaks in mice during this time frame (E8.5). It also peaks in the developing inner ear during E13-E16, after which it decreases in adulthood. The crucial function of Greb1l in craniofacial development is also evidenced in knockout mice, which develop severe craniofacial abnormalities. In addition, we show that Greb1l-/- zebrafish exhibit a loss of abnormal sensory epithelia innervation. An important role for Greb1l in sensory epithelia innervation development is supported by the eighth cranial nerve deficiencies seen in both affected subjects. In conclusion, we demonstrate that GREB1L is a key player in early inner ear and eighth cranial nerve development. Abnormalities in cochleovestibular anatomy can provide challenges for cochlear implantation. Combining a molecular diagnosis with imaging techniques might aid the development of individually tailored therapeutic interventions in the future.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 9 20%
Student > Ph. D. Student 4 9%
Student > Doctoral Student 4 9%
Student > Master 4 9%
Student > Postgraduate 3 7%
Other 8 18%
Unknown 12 27%
Readers by discipline Count As %
Medicine and Dentistry 12 27%
Unspecified 9 20%
Biochemistry, Genetics and Molecular Biology 2 5%
Environmental Science 1 2%
Arts and Humanities 1 2%
Other 4 9%
Unknown 15 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 July 2018.
All research outputs
#14,418,409
of 23,092,602 outputs
Outputs from Human Genetics
#2,449
of 2,963 outputs
Outputs of similar age
#186,884
of 329,253 outputs
Outputs of similar age from Human Genetics
#12
of 26 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,963 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,253 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.