↓ Skip to main content

Indices of comparative cognition: assessing animal models of human brain function

Overview of attention for article published in Experimental Brain Research, September 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Indices of comparative cognition: assessing animal models of human brain function
Published in
Experimental Brain Research, September 2018
DOI 10.1007/s00221-018-5370-8
Pubmed ID
Authors

Sebastian D. McBride, A. Jennifer Morton

Abstract

Understanding the cognitive capacities of animals is important, because (a) several animal models of human neurodegenerative disease are considered poor representatives of the human equivalent and (b) cognitive capacities may provide insight into alternative animal models. We used a three-stage process of cognitive and neuroanatomical comparison (using sheep as an example) to assess the appropriateness of a species to model human brain function. First, a cognitive task was defined via a reinforcement-learning algorithm where values/constants in the algorithm were taken as indirect measures of neurophysiological attributes. Second, cognitive data (values/constants) were generated for the example species (sheep) and compared to other species. Third, cognitive data were compared with neuroanatomical metrics for each species (endocranial volume, gyrification index, encephalisation quotient, and number of cortical neurons). Four breeds of sheep (n = 15/sheep) were tested using the two-choice discrimination-reversal task. The 'reversal index' was used as a measure of constants within the learning algorithm. Reversal index data ranked sheep as third in a table of species that included primates, dogs, and pigs. Across all species, number of cortical neurons correlated strongest against the reversal index (r2 = 0.66, p = 0.0075) followed by encephalization quotient (r2 = 0.42, p = 0.03), endocranial volume (r2 = 0.30, p = 0.08), and gyrification index (r2 = 0.16, p = 0.23). Sheep have a high predicted level of cognitive capacity and are thus a valid alternative model for neurodegenerative research. Using learning algorithms within cognitive tasks increases the resolution of methods of comparative cognition and can help to identify the most relevant species to model human brain function and dysfunction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 18%
Student > Bachelor 5 13%
Student > Doctoral Student 3 8%
Student > Master 3 8%
Lecturer > Senior Lecturer 2 5%
Other 5 13%
Unknown 13 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 18%
Neuroscience 5 13%
Veterinary Science and Veterinary Medicine 3 8%
Psychology 2 5%
Computer Science 2 5%
Other 3 8%
Unknown 16 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2018.
All research outputs
#13,261,464
of 23,105,443 outputs
Outputs from Experimental Brain Research
#1,549
of 3,253 outputs
Outputs of similar age
#164,657
of 341,609 outputs
Outputs of similar age from Experimental Brain Research
#9
of 45 outputs
Altmetric has tracked 23,105,443 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,253 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,609 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.