↓ Skip to main content

Correcting the NLRP3 inflammasome deficiency in macrophages from autoimmune NZB mice with exon skipping antisense oligonucleotides

Overview of attention for article published in Immunology & Cell Biology, February 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
patent
1 patent

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Correcting the NLRP3 inflammasome deficiency in macrophages from autoimmune NZB mice with exon skipping antisense oligonucleotides
Published in
Immunology & Cell Biology, February 2016
DOI 10.1038/icb.2016.3
Pubmed ID
Authors

Sara J Thygesen, David P Sester, Simon O Cridland, Steve D Wilton, Katryn J Stacey

Abstract

Inflammasomes are molecular complexes activated by infection and cellular stress, leading to caspase-1 activation and subsequent interleukin-1β (IL-1β) processing and cell death. The autoimmune NZB mouse strain does not express NLRP3, a key inflammasome initiator mediating responses to a wide variety of stimuli including endogenous danger signals, environmental irritants and a range of bacterial, fungal and viral pathogens. We have previously identified an intronic point mutation in the Nlrp3 gene from NZB mice that generates a splice acceptor site. This leads to inclusion of a pseudoexon that introduces an early termination codon and is proposed to be the cause of NLRP3 inflammasome deficiency in NZB cells. Here we have used exon skipping antisense oligonucleotides (AONs) to prevent aberrant splicing of Nlrp3 in NZB macrophages, and this restored both NLRP3 protein expression and NLRP3 inflammasome activity. Thus, the single point mutation leading to aberrant splicing is the sole cause of NLRP3 inflammasome deficiency in NZB macrophages. The NZB mouse provides a model for addressing a splicing defect in macrophages and could be used to further investigate AON design and delivery of AONs to macrophages in vivo.Immunology and Cell Biology advance online publication, 2 February 2016; doi:10.1038/icb.2016.3.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 17%
Student > Ph. D. Student 1 17%
Student > Bachelor 1 17%
Student > Doctoral Student 1 17%
Unknown 2 33%
Readers by discipline Count As %
Medicine and Dentistry 2 33%
Biochemistry, Genetics and Molecular Biology 1 17%
Unknown 3 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 March 2023.
All research outputs
#7,959,162
of 25,371,288 outputs
Outputs from Immunology & Cell Biology
#777
of 1,848 outputs
Outputs of similar age
#120,221
of 405,913 outputs
Outputs of similar age from Immunology & Cell Biology
#22
of 32 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 1,848 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 405,913 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.