↓ Skip to main content

Changes in the microbial community during bioremediation of gasoline-contaminated soil

Overview of attention for article published in Brazilian Journal of Microbiology, December 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

blogs
1 blog

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
123 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Changes in the microbial community during bioremediation of gasoline-contaminated soil
Published in
Brazilian Journal of Microbiology, December 2016
DOI 10.1016/j.bjm.2016.10.018
Pubmed ID
Authors

Aline Jaime Leal, Edmo Montes Rodrigues, Patrícia Lopes Leal, Aline Daniela Lopes Júlio, Rita de Cássia Rocha Fernandes, Arnaldo Chaer Borges, Marcos Rogério Tótola

Abstract

We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N-P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50g/kg of inoculants A and B led to the largest CO2 emission from soil. CO2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 123 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Australia 1 <1%
Unknown 122 99%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 33 27%
Student > Ph. D. Student 22 18%
Student > Master 17 14%
Other 7 6%
Student > Doctoral Student 7 6%
Other 14 11%
Unknown 23 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 18%
Environmental Science 18 15%
Biochemistry, Genetics and Molecular Biology 16 13%
Immunology and Microbiology 15 12%
Engineering 8 7%
Other 17 14%
Unknown 27 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 January 2017.
All research outputs
#6,597,135
of 25,371,288 outputs
Outputs from Brazilian Journal of Microbiology
#125
of 1,377 outputs
Outputs of similar age
#110,669
of 422,453 outputs
Outputs of similar age from Brazilian Journal of Microbiology
#2
of 15 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 1,377 research outputs from this source. They receive a mean Attention Score of 3.6. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,453 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.