↓ Skip to main content

Identification and characterization of two critical sequences in SV40PolyA that activate the green fluorescent protein reporter gene

Overview of attention for article published in Genetics and Molecular Biology, June 2011
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
patent
1 patent

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification and characterization of two critical sequences in SV40PolyA that activate the green fluorescent protein reporter gene
Published in
Genetics and Molecular Biology, June 2011
DOI 10.1590/s1415-47572011005000018
Pubmed ID
Authors

Honggang Wang, Wuzhuang Sun, Zhu Li, Xiufang Wang, Zhanjun Lv

Abstract

Alu repeats or Line-1-ORF2 (ORF2) inhibit expression of the green fluorescent protein (GFP) gene when inserted downstream of this gene in the vector pEGFP-C1. In this work, we studied cis-acting elements that eliminated the repression of GFP gene expression induced by Alu and ORF2 and sequence characteristics of these elements. We found that sense and antisense PolyA of simian virus 40 (SV40PolyA, 240 bp) eliminated the repression of GFP gene expression when inserted between the GFP gene and the Alu (283 bp) repeats or ORF2 (3825 bp) in pAlu14 (14 tandem Alu repeats were inserted downstream of the GFP gene in the vector pEGFP-C1) or pORF2. Antisense SV40PolyA (PolyAas) induced stronger gene expression than its sense orientation (PolyA). Of four 60-bp segments of PolyAas (1F1R, 2F2R, 3F3R and 4F4R) inserted independently into pAlu14, only two (2F2R and 3F3R) eliminated the inhibition of GFP gene expression induced by Alu repeats. Deletion analysis revealed that a 17 nucleotide AT repeat (17ntAT; 5'-AAAAAAATGCTTTATTT-3') in 2F2R and the fragment 3F38d9 (5'-ATAAACAAGTTAACAACA ACAATTGCATT-3') in 3F3R were critical sequences for activating the GFP gene. Sequence and structural analyses showed that 17ntAT and 3F38d9 included imperfect palindromes and may form a variety of unstable stem-loops. We suggest that the presence of imperfect palindromes and unstable stem-loops in DNA enhancer elements plays an important role in GFP gene activation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 29%
Student > Ph. D. Student 1 14%
Other 1 14%
Student > Master 1 14%
Unknown 2 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 57%
Agricultural and Biological Sciences 1 14%
Unknown 2 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2023.
All research outputs
#7,355,930
of 25,374,647 outputs
Outputs from Genetics and Molecular Biology
#110
of 771 outputs
Outputs of similar age
#39,725
of 125,986 outputs
Outputs of similar age from Genetics and Molecular Biology
#3
of 8 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 771 research outputs from this source. They receive a mean Attention Score of 4.8. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 125,986 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 5 of them.