↓ Skip to main content

Expressions of mRNA and encoded proteins of mitochondrial uncoupling protein genes (UCP1, UCP2, and UCP3) in epicardial and mediastinal adipose tissue and associations with coronary artery disease

Overview of attention for article published in Archives of Endocrinology and Metabolism, January 2023
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Expressions of mRNA and encoded proteins of mitochondrial uncoupling protein genes (UCP1, UCP2, and UCP3) in epicardial and mediastinal adipose tissue and associations with coronary artery disease
Published in
Archives of Endocrinology and Metabolism, January 2023
DOI 10.20945/2359-3997000000582
Pubmed ID
Authors

Claudia Huesca-Gómez, Yazmín Estela Torres-Paz, Giovanny Fuentevilla-Álvarez, Nadia Janet González-Moyotl, Edgar Samuel Ramírez-Marroquín, Xicótencatl Vásquez-Jiménez, Víctor Sainz-Escarrega, María Elena Soto, Reyna Samano, Ricardo Gamboa

Abstract

To evaluate the expression of UCP1, UCP2, and UCP3 mRNA and encoded proteins in epicardial and mediastinal adipose tissues in patients with coronary artery disease (CAD). We studied 60 patients with CAD and 106 patients undergoing valve replacement surgery (controls). Expression levels of UCP1, UCP2, and UCP3 mRNA and encoded proteins were measured by quantitative real-time PCR and Western blot analysis, respectively. : We found increased UCP1, UCP2, and UCP3 mRNA levels in the epicardial adipose tissue in the CAD versus the control group, and higher UCP1 and UCP3 mRNA expression in the epicardial compared with the mediastinal tissue in the CAD group. There was also increased expression of UCP1 protein in the epicardial tissue and UCP2 protein in the mediastinum tissue in patients with CAD. Finally, UCP1 expression was associated with levels of fasting plasma glucose, and UCP3 expression was associated with levels of high-density lipoprotein cholesterol and low-density cholesterol in the epicardial tissue. Our study supports the hypothesis that higher mRNA expression by UCP genes in the epicardial adipose tissue could be a protective mechanism against the production of reactive oxygen species and may guard the myocardium against damage. Thus, UCP levels are essential to maintain the adaptive phase of cardiac injury in the presence of metabolic disorders.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 1 33%
Student > Ph. D. Student 1 33%
Unknown 1 33%
Readers by discipline Count As %
Unspecified 1 33%
Biochemistry, Genetics and Molecular Biology 1 33%
Unknown 1 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 January 2023.
All research outputs
#20,938,115
of 23,570,677 outputs
Outputs from Archives of Endocrinology and Metabolism
#216
of 276 outputs
Outputs of similar age
#340,184
of 429,559 outputs
Outputs of similar age from Archives of Endocrinology and Metabolism
#9
of 13 outputs
Altmetric has tracked 23,570,677 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 276 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 429,559 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.