↓ Skip to main content

Retinal pathological features and proteome signatures of Alzheimer’s disease

Overview of attention for article published in Acta Neuropathologica, February 2023
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#6 of 2,556)
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
139 news outlets
blogs
2 blogs
twitter
79 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Retinal pathological features and proteome signatures of Alzheimer’s disease
Published in
Acta Neuropathologica, February 2023
DOI 10.1007/s00401-023-02548-2
Pubmed ID
Authors

Yosef Koronyo, Altan Rentsendorj, Nazanin Mirzaei, Giovanna C. Regis, Julia Sheyn, Haoshen Shi, Ernesto Barron, Galen Cook-Wiens, Anthony R. Rodriguez, Rodrigo Medeiros, Joao A. Paulo, Veer B. Gupta, Andrei A. Kramerov, Alexander V. Ljubimov, Jennifer E. Van Eyk, Stuart L. Graham, Vivek K. Gupta, John M. Ringman, David R. Hinton, Carol A. Miller, Keith L. Black, Antonino Cattaneo, Giovanni Meli, Mehdi Mirzaei, Dieu-Trang Fuchs, Maya Koronyo-Hamaoui

Abstract

Alzheimer's disease (AD) pathologies were discovered in the accessible neurosensory retina. However, their exact nature and topographical distribution, particularly in the early stages of functional impairment, and how they relate to disease progression in the brain remain largely unknown. To better understand the pathological features of AD in the retina, we conducted an extensive histopathological and biochemical investigation of postmortem retina and brain tissues from 86 human donors. Quantitative examination of superior and inferior temporal retinas from mild cognitive impairment (MCI) and AD patients compared to those with normal cognition (NC) revealed significant increases in amyloid β-protein (Aβ42) forms and novel intraneuronal Aβ oligomers (AβOi), which were closely associated with exacerbated retinal macrogliosis, microgliosis, and tissue atrophy. These pathologies were unevenly distributed across retinal layers and geometrical areas, with the inner layers and peripheral subregions exhibiting most pronounced accumulations in the MCI and AD versus NC retinas. While microgliosis was increased in the retina of these patients, the proportion of microglial cells engaging in Aβ uptake was reduced. Female AD patients exhibited higher levels of retinal microgliosis than males. Notably, retinal Aβ42, S100 calcium-binding protein B+ macrogliosis, and atrophy correlated with severity of brain Aβ pathology, tauopathy, and atrophy, and most retinal pathologies reflected Braak staging. All retinal biomarkers correlated with the cognitive scores, with retinal Aβ42, far-peripheral AβOi and microgliosis displaying the strongest correlations. Proteomic analysis of AD retinas revealed activation of specific inflammatory and neurodegenerative processes and inhibition of oxidative phosphorylation/mitochondrial, and photoreceptor-related pathways. This study identifies and maps retinopathy in MCI and AD patients, demonstrating the quantitative relationship with brain pathology and cognition, and may lead to reliable retinal biomarkers for noninvasive retinal screening and monitoring of AD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 79 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 73 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 11%
Student > Master 7 10%
Unspecified 6 8%
Student > Ph. D. Student 6 8%
Professor 4 5%
Other 10 14%
Unknown 32 44%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 14%
Neuroscience 7 10%
Unspecified 6 8%
Medicine and Dentistry 5 7%
Computer Science 3 4%
Other 9 12%
Unknown 33 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1083. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 January 2024.
All research outputs
#14,462
of 25,791,495 outputs
Outputs from Acta Neuropathologica
#6
of 2,556 outputs
Outputs of similar age
#455
of 488,026 outputs
Outputs of similar age from Acta Neuropathologica
#1
of 28 outputs
Altmetric has tracked 25,791,495 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,556 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.2. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 488,026 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.