↓ Skip to main content

A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes

Overview of attention for article published in Nature Microbiology, March 2023
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
50 news outlets
blogs
1 blog
twitter
46 X users
facebook
1 Facebook page

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes
Published in
Nature Microbiology, March 2023
DOI 10.1038/s41564-023-01342-w
Pubmed ID
Authors

Massimiliano Molari, Christiane Hassenrueck, Rafael Laso-Pérez, Gunter Wegener, Pierre Offre, Stefano Scilipoti, Antje Boetius

Abstract

Members of the bacterial genus Sulfurimonas (phylum Campylobacterota) dominate microbial communities in marine redoxclines and are important for sulfur and nitrogen cycling. Here we used metagenomics and metabolic analyses to characterize a Sulfurimonas from the Gakkel Ridge in the Central Arctic Ocean and Southwest Indian Ridge, showing that this species is ubiquitous in non-buoyant hydrothermal plumes at Mid Ocean Ridges across the global ocean. One Sulfurimonas species, USulfurimonas pluma, was found to be globally abundant and active in cold (<0-4 °C), oxygen-saturated and hydrogen-rich hydrothermal plumes. Compared with other Sulfurimonas species, US. pluma has a reduced genome (>17%) and genomic signatures of an aerobic chemolithotrophic metabolism using hydrogen as an energy source, including acquisition of A2-type oxidase and loss of nitrate and nitrite reductases. The dominance and unique niche of US. pluma in hydrothermal plumes suggest an unappreciated biogeochemical role for Sulfurimonas in the deep ocean.

X Demographics

X Demographics

The data shown below were collected from the profiles of 46 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 21%
Researcher 6 18%
Student > Master 3 9%
Student > Bachelor 3 9%
Student > Doctoral Student 2 6%
Other 4 12%
Unknown 9 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 21%
Biochemistry, Genetics and Molecular Biology 7 21%
Earth and Planetary Sciences 5 15%
Unspecified 2 6%
Environmental Science 2 6%
Other 1 3%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 400. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 April 2023.
All research outputs
#75,859
of 25,587,485 outputs
Outputs from Nature Microbiology
#80
of 2,057 outputs
Outputs of similar age
#2,002
of 425,336 outputs
Outputs of similar age from Nature Microbiology
#6
of 61 outputs
Altmetric has tracked 25,587,485 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,057 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 95.1. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 425,336 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 61 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.