↓ Skip to main content

FAT10 Induces cancer cell migration by stabilizing phosphorylated ABI3/NESH

Overview of attention for article published in Animal Cells and Systems, March 2023
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
2 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
FAT10 Induces cancer cell migration by stabilizing phosphorylated ABI3/NESH
Published in
Animal Cells and Systems, March 2023
DOI 10.1080/19768354.2023.2186486
Pubmed ID
Authors

Hyojin Um, Hoim Jeong, Beomgu Lee, Yerin Kim, Jihyeon Lee, Jong Seong Roh, Seung-Geun Lee, Hae Ryoun Park, William H. Robinson, Dong Hyun Sohn

Abstract

The WAVE regulatory complex (WRC) is involved in various cellular processes by regulating actin polymerization. The dysregulation of WRC components is associated with cancer development. ABI family member 3 (ABI3)/new molecule including SH3 (NESH) is one of the WRC components and it has been reported that ABI3 phosphorylation can affect WRC function. Although several residues of ABI3 have been reported to be possible phosphorylation sites, it is still unclear which residues are important for the function of ABI3. Furthermore, it is unclear how the phosphorylated form of ABI3 is regulated. Here, we demonstrate that ABI3 is stabilized by its interaction with human leukocyte antigen-F adjacent transcript 10 (FAT10). Using phospho-dead or phospho-mimetic mutants of ABI3, we showed that serine 213 and 216 are important phosphorylation sites of ABI3. In particular, FAT10 has a higher affinity for the phosphorylated form of ABI3 than the non-phosphorylated form, and it stabilizes the phosphorylated form more than the non-phosphorylated form through this differential affinity. The interaction between FAT10 and the phosphorylated form of ABI3 promoted cancer cell migration. Therefore, our results suggest that FAT10 stabilizes the phosphorylated form of ABI3, which may lead to WRC activation, thereby promoting cancer cell migration.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 March 2023.
All research outputs
#22,433,425
of 25,027,251 outputs
Outputs from Animal Cells and Systems
#112
of 151 outputs
Outputs of similar age
#351,720
of 413,248 outputs
Outputs of similar age from Animal Cells and Systems
#7
of 7 outputs
Altmetric has tracked 25,027,251 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 151 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 413,248 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one.