↓ Skip to main content

Meta-analysis of the space flight and microgravity response of the Arabidopsis plant transcriptome

Overview of attention for article published in npj Microgravity, March 2023
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

news
1 news outlet
twitter
32 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Meta-analysis of the space flight and microgravity response of the Arabidopsis plant transcriptome
Published in
npj Microgravity, March 2023
DOI 10.1038/s41526-023-00247-6
Pubmed ID
Authors

Richard Barker, Colin P. S. Kruse, Christina Johnson, Amanda Saravia-Butler, Homer Fogle, Hyun-Seok Chang, Ralph Møller Trane, Noah Kinscherf, Alicia Villacampa, Aránzazu Manzano, Raúl Herranz, Laurence B. Davin, Norman G. Lewis, Imara Perera, Chris Wolverton, Parul Gupta, Pankaj Jaiswal, Sigrid S. Reinsch, Sarah Wyatt, Simon Gilroy

Abstract

Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight experiments deposited in the National Aeronautics and Space Administration's GeneLab data repository. These data were reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common computational pipeline for either the microarray or the RNA-seq datasets. Such a standardized approach to analysis should greatly increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (i.e., microarray versus RNA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e., that share multiple elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the complexity in drawing conclusions arising from comparisons made between experiments with very different designs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 32 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 13%
Student > Ph. D. Student 3 10%
Unspecified 2 7%
Other 1 3%
Student > Doctoral Student 1 3%
Other 6 20%
Unknown 13 43%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 20%
Biochemistry, Genetics and Molecular Biology 4 13%
Unspecified 2 7%
Medicine and Dentistry 2 7%
Nursing and Health Professions 1 3%
Other 2 7%
Unknown 13 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 32. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2023.
All research outputs
#1,261,754
of 25,765,370 outputs
Outputs from npj Microgravity
#76
of 358 outputs
Outputs of similar age
#26,575
of 424,536 outputs
Outputs of similar age from npj Microgravity
#5
of 20 outputs
Altmetric has tracked 25,765,370 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 358 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 30.7. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,536 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.