↓ Skip to main content

Multiplex Immunofluorescence Image Quality Checking Using DAPI Channel–referenced Evaluation

Overview of attention for article published in Journal of Histochemistry & Cytochemistry, March 2023
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multiplex Immunofluorescence Image Quality Checking Using DAPI Channel–referenced Evaluation
Published in
Journal of Histochemistry & Cytochemistry, March 2023
DOI 10.1369/00221554231161693
Pubmed ID
Authors

Jun Jiang, Raymond Moore, Clarissa E. Jordan, Ruifeng Guo, Rachel L. Maus, Hongfang Liu, Ellen Goode, Svetomir N. Markovic, Chen Wang

Abstract

Multiplex immunofluorescence (MxIF) images provide detailed information of cell composition and spatial context for biomedical research. However, compromised data quality could lead to research biases. Comprehensive image quality checking (QC) is essential for reliable downstream analysis. As a reliable and specific staining of cell nuclei, 4',6-diamidino-2-phenylindole (DAPI) signals were used as references for tissue localization and auto-focusing across MxIF staining-scanning-bleaching iterations and could potentially be reused for QC. To confirm the feasibility of using DAPI as QC reference, pixel-level DAPI values were extracted to calculate signal fluctuations and tissue content similarities in staining-scanning-bleaching iterations for identifying quality issues. Concordance between automatic quantification and human experts' annotations were evaluated on a data set consisting of 348 fields of view (FOVs) with 45 immune and tumor cell markers. Cell distribution differences between subsets of QC-pass vs QC-failed FOVs were compared to investigate the downstream effects. Results showed that 87.3% FOVs with tissue damage and 73.4% of artifacts were identified. QC-failed FOVs showed elevated regional gathering in cellular feature space compared with the QC-pass FOVs. Our results supported that DAPI signals could be used as references for MxIF image QC, and low-quality FOVs identified by our method must be cautiously considered for downstream analyses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 20%
Researcher 1 20%
Student > Master 1 20%
Unknown 2 40%
Readers by discipline Count As %
Medicine and Dentistry 1 20%
Unknown 4 80%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2024.
All research outputs
#15,938,717
of 23,660,057 outputs
Outputs from Journal of Histochemistry & Cytochemistry
#1,749
of 2,076 outputs
Outputs of similar age
#198,735
of 369,000 outputs
Outputs of similar age from Journal of Histochemistry & Cytochemistry
#4
of 7 outputs
Altmetric has tracked 23,660,057 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,076 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 369,000 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.