↓ Skip to main content

Human neurons lacking amyloid precursor protein exhibit cholesterol‐associated developmental and presynaptic deficits

Overview of attention for article published in Journal of Cellular Physiology, March 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Human neurons lacking amyloid precursor protein exhibit cholesterol‐associated developmental and presynaptic deficits
Published in
Journal of Cellular Physiology, March 2023
DOI 10.1002/jcp.30999
Pubmed ID
Authors

Haylee Mesa, Elaine Y. Zhang, Yingcai Wang, Qi Zhang

Abstract

Amyloid precursor protein (APP) produces aggregable β-amyloid peptides and its mutations are associated with familial Alzheimer's disease (AD), which makes it one of the most studied proteins. However, APP's role in the human brain remains unclear despite years of investigation. One problem is that most studies on APP have been carried out in cell lines or model organisms, which are physiologically different from human neurons in the brain. Recently, human-induced neurons (hiNs) derived from induced pluripotent stem cells (iPSCs) provide a practical platform for studying the human brain in vitro. Here, we generated APP-null iPSCs using CRISPR/Cas9 genome editing technology and differentiate them into matured human neurons with functional synapses using a two-step procedure. During hiN differentiation and maturation, APP-null cells exhibited less neurite growth and reduced synaptogenesis in serum-free but not serum-containing media. We have found that cholesterol (Chol) remedies those developmental defects in APP-null cells, consistent with Chol's role in neurodevelopment and synaptogenesis. The phenotypic rescue was also achieved by coculturing those cells with wild-type mouse astrocytes, suggesting that APP's developmental role is likely astrocytic. Next, we examined matured hiNs using patch-clamp recording and detected reduced synaptic transmission in APP-null cells. This change was largely due to decreased synaptic vesicle (SV) release and retrieval, which was confirmed by live-cell imaging using two SV-specific fluorescent reporters. Adding Chol shortly before stimulation mitigated the SV deficits in APP-null iNs, indicating that APP facilitates presynaptic membrane Chol turnover during the SV exo-/endocytosis cycle. Taken together, our study in hiNs supports the notion that APP contributes to neurodevelopment, synaptogenesis, and neurotransmission via maintaining brain Chol homeostasis. Given the vital role of Chol in the central nervous system, the functional connection between APP and Chol bears important implications in the pathogenesis of AD.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 20%
Professor > Associate Professor 2 13%
Researcher 2 13%
Student > Bachelor 1 7%
Other 1 7%
Other 1 7%
Unknown 5 33%
Readers by discipline Count As %
Neuroscience 4 27%
Agricultural and Biological Sciences 3 20%
Chemistry 2 13%
Biochemistry, Genetics and Molecular Biology 1 7%
Unknown 5 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2023.
All research outputs
#3,060,178
of 23,511,526 outputs
Outputs from Journal of Cellular Physiology
#276
of 6,010 outputs
Outputs of similar age
#34,172
of 267,459 outputs
Outputs of similar age from Journal of Cellular Physiology
#2
of 25 outputs
Altmetric has tracked 23,511,526 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,010 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,459 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.