↓ Skip to main content

Mining metagenomes reveals diverse antibiotic biosynthetic genes in uncultured microbial communities

Overview of attention for article published in Brazilian Journal of Microbiology, March 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

twitter
15 X users

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mining metagenomes reveals diverse antibiotic biosynthetic genes in uncultured microbial communities
Published in
Brazilian Journal of Microbiology, March 2023
DOI 10.1007/s42770-023-00953-z
Pubmed ID
Authors

Dina H. Amin, Wedad M. Nageeb, Amr Elkelish, Rabab R. Makharita

Abstract

Pathogens resistant to antimicrobials form a significant threat to public health worldwide. Tackling multidrug-resistant pathogens via screening metagenomic libraries has become a common approach for the discovery of new antibiotics from uncultured microorganisms. This study focuses on capturing nonribosomal peptide synthase (NRPS) gene clusters implicated in the synthesis of many natural compounds of industrial relevance. A NRPS PCR assay was used to screen 2976 Escherichia coli clones in a soil metagenomic library to target NRPS genes. DNA extracts from 4 clones were sequenced and subjected to bioinformatic analysis to identify NRPS domains, their phylogeny, and substrate specificity.Successfully, 17 NRPS-positive hits with a biosynthetic potential were identified. DNA sequencing and BLAST analysis confirmed that NRPS protein sequences shared similarities with members of the genus Delftia in the Proteobacteria taxonomic position. Multiple alignment and phylogenetic analysis demonstrated that clones no. 15cd35 and 15cd37 shared low bootstrap values (54%) and were distantly far from close phylogenetic neighbors. Additionally, NRPS domain substrate specificity has no hits with the known ones; hence, they are more likely to use different substrates to produce new diverse antimicrobials. Further analysis confirmed that the NRPS hits resemble several transposon elements from other bacterial taxa, confirming its diversity. We confirmed that the analyses of the soil metagenomic library revealed a diverse set of NRPS related to the genus Delftia. An in-depth understanding of those positive NRPS hits is a crucial step for genetic manipulation of NRPS, shedding light on alternative novel antimicrobial compounds that can be used in drug discovery and hence supports the pharmaceutical sector.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 30%
Student > Postgraduate 1 10%
Student > Doctoral Student 1 10%
Student > Master 1 10%
Unknown 4 40%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 30%
Immunology and Microbiology 2 20%
Agricultural and Biological Sciences 1 10%
Unknown 4 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2023.
All research outputs
#3,539,589
of 24,309,087 outputs
Outputs from Brazilian Journal of Microbiology
#53
of 1,238 outputs
Outputs of similar age
#65,789
of 405,036 outputs
Outputs of similar age from Brazilian Journal of Microbiology
#2
of 45 outputs
Altmetric has tracked 24,309,087 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,238 research outputs from this source. They receive a mean Attention Score of 3.7. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 405,036 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.