↓ Skip to main content

Baseline metagenome-assembled genome (MAG) data of Sikkim hot springs from Indian Himalayan geothermal belt (IHGB) showcasing its potential CAZymes, and sulfur-nitrogen metabolic activity

Overview of attention for article published in World Journal of Microbiology and Biotechnology, May 2023
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (70th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Baseline metagenome-assembled genome (MAG) data of Sikkim hot springs from Indian Himalayan geothermal belt (IHGB) showcasing its potential CAZymes, and sulfur-nitrogen metabolic activity
Published in
World Journal of Microbiology and Biotechnology, May 2023
DOI 10.1007/s11274-023-03631-2
Pubmed ID
Authors

Sayak Das, Ishfaq Nabi Najar, Mingma Thundu Sherpa, Santosh Kumar, Prayatna Sharma, Krishnendu Mondal, Sonia Tamang, Nagendra Thakur

Abstract

Here we present the construction and characterization of metagenome assembled genomes (MAGs) from two hot springs residing in the vicinity of Indian Himalayan Geothermal Belt (IHGB). A total of 78 and 7 taxonomic bins were obtained for Old Yume Samdong (OYS) and New Yume Samdong (NYS) hot springs respectively. After passing all the criteria only 21 and 4 MAGs were further studied based on the successful prediction of their 16 S rRNA. Various databases were used such as GTDB, Kaiju, EzTaxon, BLAST XY Plot and NCBI BLAST to get the taxonomic classification of various 16 S rRNA predicted MAGs. The bacterial genomes found were from both thermophilic and mesophilic bacteria among which Proteobacteria, Chloroflexi, Bacteroidetes and Firmicutes were the abundant phyla. However, in case of OYS, two genomes belonged to archaeal Methanobacterium and Methanocaldococcus. Functional characterization revealed the richness of CAZymes such as Glycosyl Transferase (GT) (56.7%), Glycoside Hydrolase (GH) (37.4%), Carbohydrate Esterase family (CE) (8.2%), and Polysaccharide Lyase (PL) (1.9%). There were negligible antibiotic resistance genes in the MAGs however, a significant heavy metal tolerance gene was found in the MAGs. Thus, it may be assumed that there is no coexistence of antibiotic and heavy metal resistance genes in these hot spring microbiomes. Since the selected hot springs possess good sulfur content thus, we also checked the presence of genes for sulfur and nitrogen metabolism. It was found that MAGs from both the hot springs possess significant number of genes related to sulfur and nitrogen metabolism.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 17%
Student > Bachelor 1 8%
Other 1 8%
Student > Master 1 8%
Researcher 1 8%
Other 0 0%
Unknown 6 50%
Readers by discipline Count As %
Immunology and Microbiology 3 25%
Biochemistry, Genetics and Molecular Biology 2 17%
Energy 1 8%
Neuroscience 1 8%
Unknown 5 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 May 2023.
All research outputs
#6,955,214
of 25,443,857 outputs
Outputs from World Journal of Microbiology and Biotechnology
#279
of 1,887 outputs
Outputs of similar age
#119,781
of 406,892 outputs
Outputs of similar age from World Journal of Microbiology and Biotechnology
#3
of 55 outputs
Altmetric has tracked 25,443,857 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 1,887 research outputs from this source. They receive a mean Attention Score of 2.9. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 406,892 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.