↓ Skip to main content

Probing pathways by which rhynchophylline modifies sleep using spatial transcriptomics

Overview of attention for article published in Biology Direct, May 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

twitter
8 X users

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Probing pathways by which rhynchophylline modifies sleep using spatial transcriptomics
Published in
Biology Direct, May 2023
DOI 10.1186/s13062-023-00377-7
Pubmed ID
Authors

Maria Neus Ballester Roig, Tanya Leduc, Julien Dufort-Gervais, Yousra Maghmoul, Olivier Tastet, Valérie Mongrain

Abstract

Rhynchophylline (RHY) is an alkaloid component of Uncaria, which are plants extensively used in traditional Asian medicines. Uncaria treatments increase sleep time and quality in humans, and RHY induces sleep in rats. However, like many traditional natural treatments, the mechanisms of action of RHY and Uncaria remain evasive. Moreover, it is unknown whether RHY modifies key brain oscillations during sleep. We thus aimed at defining the effects of RHY on sleep architecture and oscillations throughout a 24-h cycle, as well as identifying the underlying molecular mechanisms. Mice received systemic RHY injections at two times of the day (beginning and end of the light period), and vigilance states were studied by electrocorticographic recordings. RHY enhanced slow wave sleep (SWS) after both injections, suppressed paradoxical sleep (PS) in the light but enhanced PS in the dark period. Furthermore, RHY modified brain oscillations during both wakefulness and SWS (including delta activity dynamics) in a time-dependent manner. Interestingly, most effects were larger in females. A brain spatial transcriptomic analysis showed that RHY modifies the expression of genes linked to cell movement, apoptosis/necrosis, and transcription/translation in a brain region-independent manner, and changes those linked to sleep regulation (e.g., Hcrt, Pmch) in a brain region-specific manner (e.g., in the hypothalamus). The findings provide support to the sleep-inducing effect of RHY, expose the relevance to shape wake/sleep oscillations, and highlight its effects on the transcriptome with a high spatial resolution. The exposed molecular mechanisms underlying the effect of a natural compound should benefit sleep- and brain-related medicine.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 22%
Lecturer 1 11%
Student > Postgraduate 1 11%
Student > Ph. D. Student 1 11%
Unknown 4 44%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 22%
Nursing and Health Professions 1 11%
Agricultural and Biological Sciences 1 11%
Neuroscience 1 11%
Unknown 4 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2023.
All research outputs
#4,711,819
of 23,749,054 outputs
Outputs from Biology Direct
#179
of 499 outputs
Outputs of similar age
#48,612
of 238,094 outputs
Outputs of similar age from Biology Direct
#1
of 8 outputs
Altmetric has tracked 23,749,054 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 499 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 238,094 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them