↓ Skip to main content

In vitro biocompatibility of polylactide and polybutylene succinate blends for urethral tissue engineering

Overview of attention for article published in Journal of Biomedical Materials Research, Part B: Applied Biomaterials, May 2023
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In vitro biocompatibility of polylactide and polybutylene succinate blends for urethral tissue engineering
Published in
Journal of Biomedical Materials Research, Part B: Applied Biomaterials, May 2023
DOI 10.1002/jbm.b.35268
Pubmed ID
Authors

Reetta Sartoneva, Inari Lyyra, Maiju Juusela, Vipul Sharma, Heini Huhtala, Jonathan Massera, Minna Kellomäki, Susanna Miettinen

Abstract

Surgical treatment of urothelial defects with autologous genital or extragenital tissue grafts is susceptible to complications. Tissue engineering utilizing novel biomaterials and cells such as human urothelial cells (hUC) for epithelial regeneration and adipose stromal cells (hASC) for smooth muscle restoration might offer new treatment options for urothelial defects. Previously, polylactide (PLA) has been studied for urethral tissue engineering, however, as such, it is too stiff and rigid for the application. Blending it with ductile polybutylene succinate (PBSu) could provide suitable mechanical properties for the application. Our aim was to study the morphology, viability and proliferation of hUC and hASC when cultured on 100/0 PLA/PBSu, 75/25 PLA/PBSu blend, 50/50 PLA/PBSu blend, and 0/100 PLA/PBSu discs. The results showed that the hUCs were viable and proliferated on all the studied materials. The hUCs stained pancytokeratin at 7 and 14 days, suggesting maintenance of the urothelial phenotype. The hASCs retained their viability and morphology and proliferated on all the other discs, except on PLA. On the PLA, the hASCs formed large aggregates with each other rather than attached to the material. The early smooth muscle cell markers SM22α and α-SMA were stained in hASC at 7 and 14 day time points on all PBSu-containing materials, indicating that hASCs maintain their smooth muscle differentiation potential also on PBSu. As a conclusion, PBSu is a highly potential biomaterial for urothelial tissue engineering since it supports growth and phenotypic maintenance of hUC and smooth muscle differentiation of hASC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 33%
Professor > Associate Professor 1 33%
Student > Doctoral Student 1 33%
Readers by discipline Count As %
Engineering 2 67%
Unknown 1 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 May 2023.
All research outputs
#7,558,237
of 25,971,360 outputs
Outputs from Journal of Biomedical Materials Research, Part B: Applied Biomaterials
#305
of 1,385 outputs
Outputs of similar age
#126,087
of 397,198 outputs
Outputs of similar age from Journal of Biomedical Materials Research, Part B: Applied Biomaterials
#1
of 8 outputs
Altmetric has tracked 25,971,360 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 1,385 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 397,198 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them